hyeongjin99's picture
update model card README.md
659f07c
|
raw
history blame
2.52 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit-base-aihub_model-v2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8373493975903614
          - name: Precision
            type: precision
            value: 0.8745971666076694
          - name: Recall
            type: recall
            value: 0.7993336310123969
          - name: F1
            type: f1
            value: 0.8036849674785987

vit-base-aihub_model-v2

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1993
  • Accuracy: 0.8373
  • Precision: 0.8746
  • Recall: 0.7993
  • F1: 0.8037

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 3 1.6294 0.6747 0.6434 0.6238 0.5944
No log 2.0 6 1.4495 0.7530 0.7776 0.7018 0.6875
No log 3.0 9 1.3163 0.8373 0.8563 0.7993 0.8022
1.5378 4.0 12 1.2327 0.8373 0.8736 0.7993 0.8035
1.5378 5.0 15 1.1993 0.8373 0.8746 0.7993 0.8037

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3