|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bigData_w9 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bigData_w9 |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0525 |
|
- Bleu4: 0.1309 |
|
- Rouge1: 0.4023 |
|
- Rouge2: 0.1845 |
|
- Rougel: 0.2757 |
|
- Rougelsum: 0.2753 |
|
- Gen Len: 76.4341 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 516 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu4 | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 2.0178 | 0.45 | 100 | 1.4840 | 0.1337 | 0.3875 | 0.1805 | 0.2688 | 0.2689 | 67.5509 | |
|
| 1.142 | 0.89 | 200 | 1.1196 | 0.1296 | 0.3897 | 0.1766 | 0.2669 | 0.2667 | 69.3817 | |
|
| 1.0693 | 1.34 | 300 | 1.0796 | 0.1345 | 0.3951 | 0.1818 | 0.2727 | 0.2727 | 70.015 | |
|
| 1.0536 | 1.78 | 400 | 1.0684 | 0.1284 | 0.399 | 0.1839 | 0.2731 | 0.2729 | 77.3069 | |
|
| 1.0084 | 2.23 | 500 | 1.0624 | 0.1287 | 0.3977 | 0.1808 | 0.2729 | 0.2729 | 76.7904 | |
|
| 0.9855 | 2.67 | 600 | 1.0575 | 0.1349 | 0.4005 | 0.1843 | 0.2789 | 0.2787 | 72.4521 | |
|
| 0.9812 | 3.12 | 700 | 1.0568 | 0.1303 | 0.4009 | 0.1847 | 0.2756 | 0.2752 | 76.1781 | |
|
| 0.9916 | 3.56 | 800 | 1.0507 | 0.1364 | 0.4014 | 0.1853 | 0.279 | 0.2789 | 72.9746 | |
|
| 0.9856 | 4.01 | 900 | 1.0507 | 0.1327 | 0.4003 | 0.1833 | 0.276 | 0.2758 | 74.9461 | |
|
| 0.9747 | 4.45 | 1000 | 1.0519 | 0.1328 | 0.4014 | 0.185 | 0.276 | 0.2757 | 75.9461 | |
|
| 0.9519 | 4.9 | 1100 | 1.0525 | 0.1309 | 0.4023 | 0.1845 | 0.2757 | 0.2753 | 76.4341 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|