metadata
license: mit
Jamba 8xMoe (Slerp Merge)
This model has been merged from Jamba a 52B parameter model with 16 experts. It used an accumulative SLERP to merge experts from 16 to 8.
4 Bit Inference Code
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
model_id = "isemmanuelolowe/Jamba-8xMoE_slerp"
tokenizer = AutoTokenizer.from_pretrained(model_id)
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
# load_in_8bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
llm_int8_skip_modules=["mamba"],
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
quantization_config=quantization_config
)
input_ids = tokenizer("Here is how to do bubble sort\n```python\n", return_tensors="pt")["input_ids"].to("cuda")
out = model.generate(input_ids, max_new_tokens=256, temperature=0, repetition_penalty=1)
print(tokenizer.batch_decode(out, skip_special_tokens=True))
OUTPUT: Here is how to do bubble sort
['Here is how to do bubble sort\n```python\ndef bubble_sort(array):\n for i in 0, len(array):\n for j in 0, len(array):\n if a[i] < a[j]\n a[i], a[j]\n\n```\n\n\n\n\n\n\n']