asr_model / README.md
jadasdn's picture
jadasdn/model-v1-1
dfa6a55
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: asr_model
    results: []

asr_model

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2363
  • Wer: 0.5153

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4621 2.0 1000 0.4702 0.9741
0.4612 4.0 2000 0.4621 0.9741
0.4458 6.0 3000 0.4464 0.9714
0.384 8.0 4000 0.3853 0.8235
0.3065 10.0 5000 0.3166 0.7829
0.2861 12.0 6000 0.2809 0.6802
0.248 14.0 7000 0.2677 0.6051
0.2449 16.0 8000 0.2541 0.5778
0.2298 18.0 9000 0.2480 0.5710
0.2281 20.0 10000 0.2418 0.5505
0.216 22.0 11000 0.2420 0.5340
0.2083 24.0 12000 0.2380 0.5253
0.1957 26.0 13000 0.2380 0.5209
0.1985 28.0 14000 0.2360 0.5181
0.2078 30.0 15000 0.2363 0.5153

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0