jilangdi's picture
End of training
be2e16f verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - yashtiwari/PaulMooney-Medical-ASR-Data
metrics:
  - wer
model-index:
  - name: Whisper Medium Medical
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Medical ASR
          type: yashtiwari/PaulMooney-Medical-ASR-Data
        metrics:
          - name: Wer
            type: wer
            value: 12.406468742457157

Whisper Medium Medical

This model is a fine-tuned version of openai/whisper-medium on the Medical ASR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0995
  • Wer: 12.4065

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7532 0.1357 100 0.2695 13.0099
0.2155 0.2714 200 0.2053 9.8238
0.2392 0.4071 300 0.1567 8.9549
0.151 0.5427 400 0.1159 6.9273
0.1439 0.6784 500 0.0995 12.4065

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0