bwang0911's picture
Update README.md
a7daf9a
|
raw
history blame
46.3 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - finetuner
  - mteb
  - feature-extraction
  - sentence-similarity
datasets:
  - jinaai/negation-dataset
language: en
license: apache-2.0
model-index:
  - name: jina-embedding-l-en-v1
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 61.64179104477612
          - type: ap
            value: 24.63675721041911
          - type: f1
            value: 55.10036810049116
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 60.708125
          - type: ap
            value: 57.491681452557344
          - type: f1
            value: 58.046023443205655
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 28.12
          - type: f1
            value: 26.904734434317966
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.031
          - type: map_at_10
            value: 40.742
          - type: map_at_100
            value: 41.832
          - type: map_at_1000
            value: 41.844
          - type: map_at_3
            value: 35.526
          - type: map_at_5
            value: 38.567
          - type: mrr_at_1
            value: 26.316
          - type: mrr_at_10
            value: 40.855999999999995
          - type: mrr_at_100
            value: 41.946
          - type: mrr_at_1000
            value: 41.957
          - type: mrr_at_3
            value: 35.621
          - type: mrr_at_5
            value: 38.644
          - type: ndcg_at_1
            value: 26.031
          - type: ndcg_at_10
            value: 49.483
          - type: ndcg_at_100
            value: 54.074999999999996
          - type: ndcg_at_1000
            value: 54.344
          - type: ndcg_at_3
            value: 38.792
          - type: ndcg_at_5
            value: 44.24
          - type: precision_at_1
            value: 26.031
          - type: precision_at_10
            value: 7.76
          - type: precision_at_100
            value: 0.975
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 16.098000000000003
          - type: precision_at_5
            value: 12.29
          - type: recall_at_1
            value: 26.031
          - type: recall_at_10
            value: 77.596
          - type: recall_at_100
            value: 97.51100000000001
          - type: recall_at_1000
            value: 99.57300000000001
          - type: recall_at_3
            value: 48.293
          - type: recall_at_5
            value: 61.451
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 41.76036539849672
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 34.27585676831497
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 63.47328704612227
          - type: mrr
            value: 76.63182078002022
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 87.42072640664271
          - type: cos_sim_spearman
            value: 84.31336692039407
          - type: euclidean_pearson
            value: 54.93250871487246
          - type: euclidean_spearman
            value: 55.91091252228738
          - type: manhattan_pearson
            value: 54.78812442894107
          - type: manhattan_spearman
            value: 55.35005636930548
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 86.28896103896103
          - type: f1
            value: 86.23389676482913
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 33.73729294301578
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 30.641078215958288
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.258000000000001
          - type: map_at_10
            value: 14.57
          - type: map_at_100
            value: 15.98
          - type: map_at_1000
            value: 16.149
          - type: map_at_3
            value: 11.993
          - type: map_at_5
            value: 13.383000000000001
          - type: mrr_at_1
            value: 18.176000000000002
          - type: mrr_at_10
            value: 28.560000000000002
          - type: mrr_at_100
            value: 29.656
          - type: mrr_at_1000
            value: 29.709999999999997
          - type: mrr_at_3
            value: 25.255
          - type: mrr_at_5
            value: 27.128000000000004
          - type: ndcg_at_1
            value: 18.176000000000002
          - type: ndcg_at_10
            value: 21.36
          - type: ndcg_at_100
            value: 27.619
          - type: ndcg_at_1000
            value: 31.086000000000002
          - type: ndcg_at_3
            value: 16.701
          - type: ndcg_at_5
            value: 18.559
          - type: precision_at_1
            value: 18.176000000000002
          - type: precision_at_10
            value: 6.683999999999999
          - type: precision_at_100
            value: 1.3339999999999999
          - type: precision_at_1000
            value: 0.197
          - type: precision_at_3
            value: 12.269
          - type: precision_at_5
            value: 9.798
          - type: recall_at_1
            value: 8.258000000000001
          - type: recall_at_10
            value: 27.060000000000002
          - type: recall_at_100
            value: 48.833
          - type: recall_at_1000
            value: 68.636
          - type: recall_at_3
            value: 15.895999999999999
          - type: recall_at_5
            value: 20.625
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.241
          - type: map_at_10
            value: 17.141000000000002
          - type: map_at_100
            value: 22.805
          - type: map_at_1000
            value: 24.189
          - type: map_at_3
            value: 12.940999999999999
          - type: map_at_5
            value: 14.607000000000001
          - type: mrr_at_1
            value: 62.25000000000001
          - type: mrr_at_10
            value: 70.537
          - type: mrr_at_100
            value: 70.851
          - type: mrr_at_1000
            value: 70.875
          - type: mrr_at_3
            value: 68.75
          - type: mrr_at_5
            value: 69.77499999999999
          - type: ndcg_at_1
            value: 50.125
          - type: ndcg_at_10
            value: 36.032
          - type: ndcg_at_100
            value: 39.428999999999995
          - type: ndcg_at_1000
            value: 47.138999999999996
          - type: ndcg_at_3
            value: 40.99
          - type: ndcg_at_5
            value: 37.772
          - type: precision_at_1
            value: 62.25000000000001
          - type: precision_at_10
            value: 28.050000000000004
          - type: precision_at_100
            value: 8.527999999999999
          - type: precision_at_1000
            value: 1.82
          - type: precision_at_3
            value: 45
          - type: precision_at_5
            value: 36
          - type: recall_at_1
            value: 8.241
          - type: recall_at_10
            value: 22.583000000000002
          - type: recall_at_100
            value: 44.267
          - type: recall_at_1000
            value: 69.497
          - type: recall_at_3
            value: 14.326
          - type: recall_at_5
            value: 17.29
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 42.295
          - type: f1
            value: 38.32403088027173
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 58.553
          - type: map_at_10
            value: 69.632
          - type: map_at_100
            value: 69.95400000000001
          - type: map_at_1000
            value: 69.968
          - type: map_at_3
            value: 67.656
          - type: map_at_5
            value: 68.86
          - type: mrr_at_1
            value: 63.156
          - type: mrr_at_10
            value: 74.37700000000001
          - type: mrr_at_100
            value: 74.629
          - type: mrr_at_1000
            value: 74.63300000000001
          - type: mrr_at_3
            value: 72.577
          - type: mrr_at_5
            value: 73.71
          - type: ndcg_at_1
            value: 63.156
          - type: ndcg_at_10
            value: 75.345
          - type: ndcg_at_100
            value: 76.728
          - type: ndcg_at_1000
            value: 77.006
          - type: ndcg_at_3
            value: 71.67099999999999
          - type: ndcg_at_5
            value: 73.656
          - type: precision_at_1
            value: 63.156
          - type: precision_at_10
            value: 9.673
          - type: precision_at_100
            value: 1.045
          - type: precision_at_1000
            value: 0.108
          - type: precision_at_3
            value: 28.393
          - type: precision_at_5
            value: 18.160999999999998
          - type: recall_at_1
            value: 58.553
          - type: recall_at_10
            value: 88.362
          - type: recall_at_100
            value: 94.401
          - type: recall_at_1000
            value: 96.256
          - type: recall_at_3
            value: 78.371
          - type: recall_at_5
            value: 83.32300000000001
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.302
          - type: map_at_10
            value: 31.887
          - type: map_at_100
            value: 33.727000000000004
          - type: map_at_1000
            value: 33.914
          - type: map_at_3
            value: 27.254
          - type: map_at_5
            value: 29.904999999999998
          - type: mrr_at_1
            value: 39.043
          - type: mrr_at_10
            value: 47.858000000000004
          - type: mrr_at_100
            value: 48.636
          - type: mrr_at_1000
            value: 48.677
          - type: mrr_at_3
            value: 45.062000000000005
          - type: mrr_at_5
            value: 46.775
          - type: ndcg_at_1
            value: 39.043
          - type: ndcg_at_10
            value: 39.899
          - type: ndcg_at_100
            value: 46.719
          - type: ndcg_at_1000
            value: 49.739
          - type: ndcg_at_3
            value: 35.666
          - type: ndcg_at_5
            value: 37.232
          - type: precision_at_1
            value: 39.043
          - type: precision_at_10
            value: 11.265
          - type: precision_at_100
            value: 1.864
          - type: precision_at_1000
            value: 0.23800000000000002
          - type: precision_at_3
            value: 24.227999999999998
          - type: precision_at_5
            value: 18.148
          - type: recall_at_1
            value: 19.302
          - type: recall_at_10
            value: 47.278
          - type: recall_at_100
            value: 72.648
          - type: recall_at_1000
            value: 90.793
          - type: recall_at_3
            value: 31.235000000000003
          - type: recall_at_5
            value: 38.603
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 31.398
          - type: map_at_10
            value: 44.635000000000005
          - type: map_at_100
            value: 45.513
          - type: map_at_1000
            value: 45.595
          - type: map_at_3
            value: 41.894
          - type: map_at_5
            value: 43.514
          - type: mrr_at_1
            value: 62.795
          - type: mrr_at_10
            value: 70.001
          - type: mrr_at_100
            value: 70.378
          - type: mrr_at_1000
            value: 70.399
          - type: mrr_at_3
            value: 68.542
          - type: mrr_at_5
            value: 69.394
          - type: ndcg_at_1
            value: 62.795
          - type: ndcg_at_10
            value: 53.635
          - type: ndcg_at_100
            value: 57.05
          - type: ndcg_at_1000
            value: 58.755
          - type: ndcg_at_3
            value: 49.267
          - type: ndcg_at_5
            value: 51.522
          - type: precision_at_1
            value: 62.795
          - type: precision_at_10
            value: 11.196
          - type: precision_at_100
            value: 1.389
          - type: precision_at_1000
            value: 0.16199999999999998
          - type: precision_at_3
            value: 30.804
          - type: precision_at_5
            value: 20.265
          - type: recall_at_1
            value: 31.398
          - type: recall_at_10
            value: 55.982
          - type: recall_at_100
            value: 69.453
          - type: recall_at_1000
            value: 80.756
          - type: recall_at_3
            value: 46.205
          - type: recall_at_5
            value: 50.662
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 63.803200000000004
          - type: ap
            value: 59.04397034963468
          - type: f1
            value: 63.4675375611795
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 17.671
          - type: map_at_10
            value: 29.152
          - type: map_at_100
            value: 30.422
          - type: map_at_1000
            value: 30.481
          - type: map_at_3
            value: 25.417
          - type: map_at_5
            value: 27.448
          - type: mrr_at_1
            value: 18.195
          - type: mrr_at_10
            value: 29.67
          - type: mrr_at_100
            value: 30.891999999999996
          - type: mrr_at_1000
            value: 30.944
          - type: mrr_at_3
            value: 25.974000000000004
          - type: mrr_at_5
            value: 27.996
          - type: ndcg_at_1
            value: 18.195
          - type: ndcg_at_10
            value: 35.795
          - type: ndcg_at_100
            value: 42.117
          - type: ndcg_at_1000
            value: 43.585
          - type: ndcg_at_3
            value: 28.122000000000003
          - type: ndcg_at_5
            value: 31.757
          - type: precision_at_1
            value: 18.195
          - type: precision_at_10
            value: 5.89
          - type: precision_at_100
            value: 0.9079999999999999
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 12.24
          - type: precision_at_5
            value: 9.178
          - type: recall_at_1
            value: 17.671
          - type: recall_at_10
            value: 56.373
          - type: recall_at_100
            value: 86.029
          - type: recall_at_1000
            value: 97.246
          - type: recall_at_3
            value: 35.414
          - type: recall_at_5
            value: 44.149
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 90.80255357957135
          - type: f1
            value: 90.79256308087807
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 71.20611035111719
          - type: f1
            value: 54.075483897190836
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 70.79354404841965
          - type: f1
            value: 68.53816551555609
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 76.6072629455279
          - type: f1
            value: 77.04997715738867
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 30.432745003633016
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 28.95493811839366
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 31.63516074152514
          - type: mrr
            value: 32.73091425241894
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.379
          - type: map_at_10
            value: 12.051
          - type: map_at_100
            value: 15.176
          - type: map_at_1000
            value: 16.662
          - type: map_at_3
            value: 8.588
          - type: map_at_5
            value: 10.274
          - type: mrr_at_1
            value: 44.891999999999996
          - type: mrr_at_10
            value: 53.06999999999999
          - type: mrr_at_100
            value: 53.675
          - type: mrr_at_1000
            value: 53.717999999999996
          - type: mrr_at_3
            value: 50.671
          - type: mrr_at_5
            value: 52.25
          - type: ndcg_at_1
            value: 42.879
          - type: ndcg_at_10
            value: 33.291
          - type: ndcg_at_100
            value: 30.567
          - type: ndcg_at_1000
            value: 39.598
          - type: ndcg_at_3
            value: 37.713
          - type: ndcg_at_5
            value: 36.185
          - type: precision_at_1
            value: 44.891999999999996
          - type: precision_at_10
            value: 24.923000000000002
          - type: precision_at_100
            value: 8.015
          - type: precision_at_1000
            value: 2.083
          - type: precision_at_3
            value: 35.088
          - type: precision_at_5
            value: 31.765
          - type: recall_at_1
            value: 5.379
          - type: recall_at_10
            value: 16.346
          - type: recall_at_100
            value: 31.887999999999998
          - type: recall_at_1000
            value: 64.90599999999999
          - type: recall_at_3
            value: 9.543
          - type: recall_at_5
            value: 12.369
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.654
          - type: map_at_10
            value: 40.163
          - type: map_at_100
            value: 41.376000000000005
          - type: map_at_1000
            value: 41.411
          - type: map_at_3
            value: 35.677
          - type: map_at_5
            value: 38.238
          - type: mrr_at_1
            value: 29.055999999999997
          - type: mrr_at_10
            value: 42.571999999999996
          - type: mrr_at_100
            value: 43.501
          - type: mrr_at_1000
            value: 43.527
          - type: mrr_at_3
            value: 38.775
          - type: mrr_at_5
            value: 40.953
          - type: ndcg_at_1
            value: 29.026999999999997
          - type: ndcg_at_10
            value: 47.900999999999996
          - type: ndcg_at_100
            value: 52.941
          - type: ndcg_at_1000
            value: 53.786
          - type: ndcg_at_3
            value: 39.387
          - type: ndcg_at_5
            value: 43.65
          - type: precision_at_1
            value: 29.026999999999997
          - type: precision_at_10
            value: 8.247
          - type: precision_at_100
            value: 1.102
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 18.231
          - type: precision_at_5
            value: 13.378
          - type: recall_at_1
            value: 25.654
          - type: recall_at_10
            value: 69.175
          - type: recall_at_100
            value: 90.85600000000001
          - type: recall_at_1000
            value: 97.18
          - type: recall_at_3
            value: 47.043
          - type: recall_at_5
            value: 56.86600000000001
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 70.785
          - type: map_at_10
            value: 84.509
          - type: map_at_100
            value: 85.17
          - type: map_at_1000
            value: 85.187
          - type: map_at_3
            value: 81.628
          - type: map_at_5
            value: 83.422
          - type: mrr_at_1
            value: 81.43
          - type: mrr_at_10
            value: 87.506
          - type: mrr_at_100
            value: 87.616
          - type: mrr_at_1000
            value: 87.617
          - type: mrr_at_3
            value: 86.598
          - type: mrr_at_5
            value: 87.215
          - type: ndcg_at_1
            value: 81.44
          - type: ndcg_at_10
            value: 88.208
          - type: ndcg_at_100
            value: 89.49000000000001
          - type: ndcg_at_1000
            value: 89.59700000000001
          - type: ndcg_at_3
            value: 85.471
          - type: ndcg_at_5
            value: 86.955
          - type: precision_at_1
            value: 81.44
          - type: precision_at_10
            value: 13.347000000000001
          - type: precision_at_100
            value: 1.53
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.330000000000005
          - type: precision_at_5
            value: 24.506
          - type: recall_at_1
            value: 70.785
          - type: recall_at_10
            value: 95.15
          - type: recall_at_100
            value: 99.502
          - type: recall_at_1000
            value: 99.993
          - type: recall_at_3
            value: 87.234
          - type: recall_at_5
            value: 91.467
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 52.40682777853522
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 56.61834429208595
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.918
          - type: map_at_10
            value: 11.562
          - type: map_at_100
            value: 13.636999999999999
          - type: map_at_1000
            value: 13.918
          - type: map_at_3
            value: 8.353
          - type: map_at_5
            value: 9.878
          - type: mrr_at_1
            value: 24.3
          - type: mrr_at_10
            value: 33.914
          - type: mrr_at_100
            value: 35.079
          - type: mrr_at_1000
            value: 35.134
          - type: mrr_at_3
            value: 30.833
          - type: mrr_at_5
            value: 32.528
          - type: ndcg_at_1
            value: 24.3
          - type: ndcg_at_10
            value: 19.393
          - type: ndcg_at_100
            value: 27.471
          - type: ndcg_at_1000
            value: 32.543
          - type: ndcg_at_3
            value: 18.648
          - type: ndcg_at_5
            value: 16.064999999999998
          - type: precision_at_1
            value: 24.3
          - type: precision_at_10
            value: 9.92
          - type: precision_at_100
            value: 2.152
          - type: precision_at_1000
            value: 0.338
          - type: precision_at_3
            value: 17.1
          - type: precision_at_5
            value: 13.819999999999999
          - type: recall_at_1
            value: 4.918
          - type: recall_at_10
            value: 20.102
          - type: recall_at_100
            value: 43.69
          - type: recall_at_1000
            value: 68.568
          - type: recall_at_3
            value: 10.383000000000001
          - type: recall_at_5
            value: 13.977999999999998
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 86.02374279770862
          - type: cos_sim_spearman
            value: 80.3123278821752
          - type: euclidean_pearson
            value: 78.150387301923
          - type: euclidean_spearman
            value: 74.27020095240543
          - type: manhattan_pearson
            value: 78.00212720962597
          - type: manhattan_spearman
            value: 74.27996355049189
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 83.56832604166104
          - type: cos_sim_spearman
            value: 73.85172437109456
          - type: euclidean_pearson
            value: 70.77037821156355
          - type: euclidean_spearman
            value: 58.32603602271459
          - type: manhattan_pearson
            value: 70.6019035905572
          - type: manhattan_spearman
            value: 58.18758998109944
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 83.97624603590171
          - type: cos_sim_spearman
            value: 84.3654403570941
          - type: euclidean_pearson
            value: 77.37734191552401
          - type: euclidean_spearman
            value: 77.83492278107906
          - type: manhattan_pearson
            value: 77.38406845115612
          - type: manhattan_spearman
            value: 77.80429501178632
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 82.5175806484823
          - type: cos_sim_spearman
            value: 77.84074419393815
          - type: euclidean_pearson
            value: 75.31514179994578
          - type: euclidean_spearman
            value: 71.06564963155697
          - type: manhattan_pearson
            value: 75.25016497298036
          - type: manhattan_spearman
            value: 71.0503867625097
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 85.15312065200007
          - type: cos_sim_spearman
            value: 86.28786282283781
          - type: euclidean_pearson
            value: 69.93961446583728
          - type: euclidean_spearman
            value: 70.99565144007187
          - type: manhattan_pearson
            value: 70.06338127800244
          - type: manhattan_spearman
            value: 71.15328825585216
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 80.48261723093232
          - type: cos_sim_spearman
            value: 82.13997187275378
          - type: euclidean_pearson
            value: 72.01034058956992
          - type: euclidean_spearman
            value: 72.90423890320797
          - type: manhattan_pearson
            value: 71.91819389305805
          - type: manhattan_spearman
            value: 72.804333901611
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 89.89094326696411
          - type: cos_sim_spearman
            value: 89.5679328484923
          - type: euclidean_pearson
            value: 77.27326226557433
          - type: euclidean_spearman
            value: 75.44670270858582
          - type: manhattan_pearson
            value: 77.49623029933024
          - type: manhattan_spearman
            value: 75.6317127686177
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 67.03259798800852
          - type: cos_sim_spearman
            value: 66.17683868865686
          - type: euclidean_pearson
            value: 49.154524473561416
          - type: euclidean_spearman
            value: 58.82796771905756
          - type: manhattan_pearson
            value: 48.97445679282608
          - type: manhattan_spearman
            value: 58.69653501728678
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 84.01368632144246
          - type: cos_sim_spearman
            value: 83.64169080274549
          - type: euclidean_pearson
            value: 75.84021692605727
          - type: euclidean_spearman
            value: 74.69132304226987
          - type: manhattan_pearson
            value: 75.9627059404693
          - type: manhattan_spearman
            value: 74.83616979158057
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 81.63017243645893
          - type: mrr
            value: 94.79274900843528
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 47.094
          - type: map_at_10
            value: 56.047000000000004
          - type: map_at_100
            value: 56.701
          - type: map_at_1000
            value: 56.742000000000004
          - type: map_at_3
            value: 53.189
          - type: map_at_5
            value: 54.464
          - type: mrr_at_1
            value: 50
          - type: mrr_at_10
            value: 57.567
          - type: mrr_at_100
            value: 58.104
          - type: mrr_at_1000
            value: 58.142
          - type: mrr_at_3
            value: 55.222
          - type: mrr_at_5
            value: 56.355999999999995
          - type: ndcg_at_1
            value: 50
          - type: ndcg_at_10
            value: 60.84
          - type: ndcg_at_100
            value: 63.983999999999995
          - type: ndcg_at_1000
            value: 65.19500000000001
          - type: ndcg_at_3
            value: 55.491
          - type: ndcg_at_5
            value: 57.51500000000001
          - type: precision_at_1
            value: 50
          - type: precision_at_10
            value: 8.366999999999999
          - type: precision_at_100
            value: 1.013
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 21.556
          - type: precision_at_5
            value: 14.2
          - type: recall_at_1
            value: 47.094
          - type: recall_at_10
            value: 74.239
          - type: recall_at_100
            value: 89
          - type: recall_at_1000
            value: 98.667
          - type: recall_at_3
            value: 59.606
          - type: recall_at_5
            value: 64.756
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.7128712871287
          - type: cos_sim_ap
            value: 91.8391173412632
          - type: cos_sim_f1
            value: 85.23421588594704
          - type: cos_sim_precision
            value: 86.82572614107885
          - type: cos_sim_recall
            value: 83.7
          - type: dot_accuracy
            value: 99.23960396039604
          - type: dot_ap
            value: 58.07268940033783
          - type: dot_f1
            value: 58.00486618004865
          - type: dot_precision
            value: 56.49289099526066
          - type: dot_recall
            value: 59.599999999999994
          - type: euclidean_accuracy
            value: 99.62574257425743
          - type: euclidean_ap
            value: 86.31145319031712
          - type: euclidean_f1
            value: 80.12486992715921
          - type: euclidean_precision
            value: 83.51409978308027
          - type: euclidean_recall
            value: 77
          - type: manhattan_accuracy
            value: 99.62178217821783
          - type: manhattan_ap
            value: 85.96697606381338
          - type: manhattan_f1
            value: 80.24193548387099
          - type: manhattan_precision
            value: 80.89430894308943
          - type: manhattan_recall
            value: 79.60000000000001
          - type: max_accuracy
            value: 99.7128712871287
          - type: max_ap
            value: 91.8391173412632
          - type: max_f1
            value: 85.23421588594704
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 54.98955943181893
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 32.72837687387049
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 51.02207528482775
          - type: mrr
            value: 51.8842044393515
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.250596893094876
          - type: cos_sim_spearman
            value: 30.609457706010158
          - type: dot_pearson
            value: 19.739579843052162
          - type: dot_spearman
            value: 20.27834051930579
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.187
          - type: map_at_10
            value: 1.239
          - type: map_at_100
            value: 6.388000000000001
          - type: map_at_1000
            value: 15.507000000000001
          - type: map_at_3
            value: 0.5
          - type: map_at_5
            value: 0.712
          - type: mrr_at_1
            value: 70
          - type: mrr_at_10
            value: 83
          - type: mrr_at_100
            value: 83
          - type: mrr_at_1000
            value: 83
          - type: mrr_at_3
            value: 81.667
          - type: mrr_at_5
            value: 82.667
          - type: ndcg_at_1
            value: 65
          - type: ndcg_at_10
            value: 56.57600000000001
          - type: ndcg_at_100
            value: 42.054
          - type: ndcg_at_1000
            value: 38.269999999999996
          - type: ndcg_at_3
            value: 63.134
          - type: ndcg_at_5
            value: 58.792
          - type: precision_at_1
            value: 70
          - type: precision_at_10
            value: 59.8
          - type: precision_at_100
            value: 42.5
          - type: precision_at_1000
            value: 17.304
          - type: precision_at_3
            value: 67.333
          - type: precision_at_5
            value: 62.4
          - type: recall_at_1
            value: 0.187
          - type: recall_at_10
            value: 1.529
          - type: recall_at_100
            value: 9.673
          - type: recall_at_1000
            value: 35.807
          - type: recall_at_3
            value: 0.5459999999999999
          - type: recall_at_5
            value: 0.8130000000000001
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 1.646
          - type: map_at_10
            value: 6.569999999999999
          - type: map_at_100
            value: 11.530999999999999
          - type: map_at_1000
            value: 13.009
          - type: map_at_3
            value: 3.234
          - type: map_at_5
            value: 4.956
          - type: mrr_at_1
            value: 18.367
          - type: mrr_at_10
            value: 35.121
          - type: mrr_at_100
            value: 36.142
          - type: mrr_at_1000
            value: 36.153
          - type: mrr_at_3
            value: 29.252
          - type: mrr_at_5
            value: 33.434999999999995
          - type: ndcg_at_1
            value: 16.326999999999998
          - type: ndcg_at_10
            value: 17.336
          - type: ndcg_at_100
            value: 28.925
          - type: ndcg_at_1000
            value: 41.346
          - type: ndcg_at_3
            value: 16.131999999999998
          - type: ndcg_at_5
            value: 18.107
          - type: precision_at_1
            value: 18.367
          - type: precision_at_10
            value: 16.531000000000002
          - type: precision_at_100
            value: 6.449000000000001
          - type: precision_at_1000
            value: 1.451
          - type: precision_at_3
            value: 17.687
          - type: precision_at_5
            value: 20
          - type: recall_at_1
            value: 1.646
          - type: recall_at_10
            value: 12.113
          - type: recall_at_100
            value: 40.261
          - type: recall_at_1000
            value: 77.878
          - type: recall_at_3
            value: 4.181
          - type: recall_at_5
            value: 7.744
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 66.61500000000001
          - type: ap
            value: 11.70707762285034
          - type: f1
            value: 50.53259935502312
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 54.89247311827958
          - type: f1
            value: 55.044186334629586
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 46.95851882042766
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 84.01978899684092
          - type: cos_sim_ap
            value: 68.10404793439619
          - type: cos_sim_f1
            value: 63.93145891154821
          - type: cos_sim_precision
            value: 58.905937291527685
          - type: cos_sim_recall
            value: 69.89445910290237
          - type: dot_accuracy
            value: 77.78506288370984
          - type: dot_ap
            value: 38.55636213255057
          - type: dot_f1
            value: 44.6866485013624
          - type: dot_precision
            value: 34.07202216066482
          - type: dot_recall
            value: 64.90765171503958
          - type: euclidean_accuracy
            value: 82.94093103653812
          - type: euclidean_ap
            value: 63.65596102723866
          - type: euclidean_f1
            value: 61.444903916322055
          - type: euclidean_precision
            value: 56.994584837545126
          - type: euclidean_recall
            value: 66.64907651715039
          - type: manhattan_accuracy
            value: 82.99457590749239
          - type: manhattan_ap
            value: 63.77653539498376
          - type: manhattan_f1
            value: 61.48299483235189
          - type: manhattan_precision
            value: 56.455528580887226
          - type: manhattan_recall
            value: 67.4934036939314
          - type: max_accuracy
            value: 84.01978899684092
          - type: max_ap
            value: 68.10404793439619
          - type: max_f1
            value: 63.93145891154821
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 87.75177552683665
          - type: cos_sim_ap
            value: 83.75899853399007
          - type: cos_sim_f1
            value: 76.25022931572188
          - type: cos_sim_precision
            value: 72.83241045769958
          - type: cos_sim_recall
            value: 80.00461964890668
          - type: dot_accuracy
            value: 81.8197694725812
          - type: dot_ap
            value: 67.6851675345571
          - type: dot_f1
            value: 64.04501820589209
          - type: dot_precision
            value: 56.17233770758332
          - type: dot_recall
            value: 74.48413920542039
          - type: euclidean_accuracy
            value: 83.3003454030349
          - type: euclidean_ap
            value: 72.80186670461116
          - type: euclidean_f1
            value: 65.38000218078727
          - type: euclidean_precision
            value: 61.92082616179002
          - type: euclidean_recall
            value: 69.24853711117956
          - type: manhattan_accuracy
            value: 83.32169053440447
          - type: manhattan_ap
            value: 72.8243559753097
          - type: manhattan_f1
            value: 65.45939901157966
          - type: manhattan_precision
            value: 61.58284124075205
          - type: manhattan_recall
            value: 69.85679088389283
          - type: max_accuracy
            value: 87.75177552683665
          - type: max_ap
            value: 83.75899853399007
          - type: max_f1
            value: 76.25022931572188



Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications.

The text embedding suite trained by Jina AI, Finetuner team.

Intented Usage & Model Info

jina-embedding-l-en-v1 is a language model that has been trained using Jina AI's Linnaeus-Clean dataset. This dataset consists of 380 million pairs of sentences, which include both query-document pairs. These pairs were obtained from various domains and were carefully selected through a thorough cleaning process. The Linnaeus-Full dataset, from which the Linnaeus-Clean dataset is derived, originally contained 1.6 billion sentence pairs.

The model has a range of use cases, including information retrieval, semantic textual similarity, text reranking, and more.

With a size of 330 million parameters, the model enables single-gpu inference while delivering better performance than our small and base model. Additionally, we provide the following options:

  • jina-embedding-s-en-v1: 35 million parameters.
  • jina-embedding-b-en-v1: 110 million parameters.
  • jina-embedding-l-en-v1: 330 million parameters (you are here).
  • jina-embedding-1b-en-v1: 1.2 billion parameters, 10* bert-base size (soon).
  • jina-embedding-6b-en-v1: 6 billion parameters 30* bert-base size(soon).

Data & Parameters

More info will be released together with the technique report.

Metrics

We compared the model against all-minilm-l6-v2/all-mpnet-base-v2 from sbert and text-embeddings-ada-002 from OpenAI:

Name param context
all-minilm-l6-v2 33m 128
all-mpnet-base-v2 110m 128
ada-embedding-002 Unknown/OpenAI API 8192
jina-embedding-s-en-v1 35m 512
jina-embedding-b-en-v1 110m 512
jina-embedding-l-en-v1 330m 512
Name STS12 STS13 STS14 STS15 STS16 STS17 TRECOVID Quora SciFact
all-minilm-l6-v2 0.724 0.806 0.756 0.854 0.79 0.876 0.473 0.876 0.645
all-mpnet-base-v2 0.726 0.835 0.78 0.857 0.8 0.906 0.513 0.875 0.656
ada-embedding-002 0.698 0.833 0.761 0.861 0.86 0.903 0.685 0.876 0.726
jina-embedding-s-en-v1 0.742 0.786 0.738 0.837 0.80 0.875 0.543 0.857 0.608
jina-embedding-b-en-v1 0.751 0.809 0.761 0.856 0.812 0.89 0.601 0.876 0.645
jina-embedding-l-en-v1 0.739 0.844 0.778 0.863 0.829 0.896 0.526 0.882 0.652

update: we have updated the checkpoints for small/base model, re-evaluation of large model and BEIR is running in progress.

Usage

Use with Jina AI Finetuner

!pip install finetuner
import finetuner

model = finetuner.build_model('jinaai/jina-embedding-l-en-v1')
embeddings = finetuner.encode(
    model=model,
    data=['how is the weather today', 'What is the current weather like today?']
)
print(finetuner.cos_sim(embeddings[0], embeddings[1]))

Use directly with Huggingface Transformers:

import torch
from transformers import AutoModel, AutoTokenizer


def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0]
    input_mask_expanded = (
        attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    )
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
        input_mask_expanded.sum(1), min=1e-9
    )

sentences = ['how is the weather today', 'What is the current weather like today?']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embedding-l-en-v1')
model = AutoModel.from_pretrained('jinaai/jina-embedding-l-en-v1')

with torch.inference_mode():
    encoded_input = tokenizer(
        sentences, padding=True, truncation=True, return_tensors='pt'
    )
    model_output = model.encoder(**encoded_input)
    embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

Fine-tuning

Please consider Finetuner.

Plans

  1. The development of jina-embedding-s-en-v2 is currently underway with two main objectives: improving performance and increasing the maximum sequence length.
  2. We are currently working on a bilingual embedding model that combines English and X language. The upcoming model will be called jina-embedding-s/b/l-de-v1.

Contact

Join our Discord community and chat with other community members about ideas.