|
--- |
|
library_name: transformers |
|
license: mit |
|
language: |
|
- fr |
|
- en |
|
tags: |
|
- french |
|
- chocolatine |
|
datasets: |
|
- jpacifico/french-orca-dpo-pairs-revised |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
### Chocolatine-14B-Instruct-DPO-v1.1 |
|
|
|
DPO fine-tuned of [microsoft/Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct) (14B params) |
|
using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset. |
|
Training in French also improves the model in English, surpassing the performances of its base model. |
|
Window context = 4k tokens |
|
|
|
### Benchmarks |
|
|
|
The first Chocolatine-14B version is already the best-performing < 50B model in terms of MMLU-PRO on the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) (august 2024) |
|
This new version 1.1 is also submitted, results coming soon. |
|
|
|
### MT-Bench |
|
|
|
Chocolatine-14B-Instruct-DPO-v1.1 is outperforming Phi-3-medium-4k-instruct and its previous version. |
|
And also this v1.1 is pretty close from GPT-4o-mini (first turn is amazing!). |
|
|
|
``` |
|
########## First turn ########## |
|
score |
|
model turn |
|
Chocolatine-14B-Instruct-DPO-v1.1 1 9.1375 |
|
gpt-4o-mini 1 9.1375 |
|
Chocolatine-14B-Instruct-4k-DPO 1 8.7250 |
|
Phi-3-medium-4k-instruct 1 8.7125 |
|
Chocolatine-3B-Instruct-DPO-Revised 1 8.4625 |
|
Phi-3-mini-4k-instruct 1 8.4125 |
|
gpt-3.5-turbo 1 8.2750 |
|
|
|
########## Second turn ########## |
|
score |
|
model turn |
|
gpt-4o-mini 2 9.05000 |
|
gpt-3.5-turbo 2 8.20625 |
|
Chocolatine-14B-Instruct-DPO-v1.1 2 8.18750 |
|
Chocolatine-14B-Instruct-4k-DPO 2 8.15000 |
|
Phi-3-medium-4k-instruct 2 7.92500 |
|
Chocolatine-3B-Instruct-DPO-Revised 2 7.61250 |
|
Phi-3-mini-4k-instruct 2 7.38750 |
|
|
|
########## Average ########## |
|
score |
|
model |
|
gpt-4o-mini 9.093750 |
|
Chocolatine-14B-Instruct-DPO-v1.1 8.662500 |
|
Chocolatine-14B-Instruct-4k-DPO 8.437500 |
|
Phi-3-medium-4k-instruct 8.318750 |
|
gpt-3.5-turbo 8.240625 |
|
Chocolatine-3B-Instruct-DPO-Revised 8.037500 |
|
Phi-3-mini-4k-instruct 7.900000 |
|
``` |
|
|
|
### Usage |
|
|
|
You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_14B_inference_test_colab.ipynb) |
|
|
|
You can also run Chocolatine using the following code: |
|
|
|
```python |
|
import transformers |
|
from transformers import AutoTokenizer |
|
|
|
# Format prompt |
|
message = [ |
|
{"role": "system", "content": "You are a helpful assistant chatbot."}, |
|
{"role": "user", "content": "What is a Large Language Model?"} |
|
] |
|
tokenizer = AutoTokenizer.from_pretrained(new_model) |
|
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) |
|
|
|
# Create pipeline |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=new_model, |
|
tokenizer=tokenizer |
|
) |
|
|
|
# Generate text |
|
sequences = pipeline( |
|
prompt, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9, |
|
num_return_sequences=1, |
|
max_length=200, |
|
) |
|
print(sequences[0]['generated_text']) |
|
``` |
|
|
|
### Limitations |
|
|
|
The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance. |
|
It does not have any moderation mechanism. |
|
|
|
- **Developed by:** Jonathan Pacifico, 2024 |
|
- **Model type:** LLM |
|
- **Language(s) (NLP):** French, English |
|
- **License:** MIT |