juanpablomesa's picture
Add new SentenceTransformer model.
183f975 verified
|
raw
history blame
29.9 kB
metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:4012
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      Extensive messenger RNA editing generates transcript and protein diversity
      in genes involved in neural excitability, as previously described, as well
      as in genes participating in a broad range of other cellular functions. 
    sentences:
      - Do cephalopods use RNA editing less frequently than other species?
      - GV1001 vaccine targets which enzyme?
      - Which event results in the acetylation of S6K1?
  - source_sentence: >-
      Yes, exposure to household furry pets influences the gut microbiota of
      infants.
    sentences:
      - Can pets affect infant microbiomed?
      - What is the mode of action of Thiazovivin?
      - What are the effects of CAMK4 inhibition?
  - source_sentence: >-
      In children with heart failure evidence of the effect of enalapril is
      empirical. Enalapril was clinically safe and effective in 50% to 80% of
      for children with cardiac failure secondary to congenital heart
      malformations before and after cardiac surgery,  impaired ventricular
      function , valvar regurgitation,  congestive cardiomyopathy,  , arterial
      hypertension, life-threatening arrhythmias coexisting with circulatory
      insufficiency.   

      ACE inhibitors have shown a transient beneficial effect on heart failure
      due to anticancer drugs and possibly a beneficial effect in muscular
      dystrophy-associated cardiomyopathy, which deserves further studies.
    sentences:
      - Which receptors can be evaluated with the [18F]altanserin?
      - >-
        In what proportion of children with heart failure has Enalapril been
        shown to be safe and effective?
      - Which major signaling pathways are regulated by RIP1?
  - source_sentence: >-
      Cellular senescence-associated heterochromatic foci (SAHFS) are a novel
      type of chromatin condensation involving alterations of linker histone H1
      and linker DNA-binding proteins. SAHFS can be formed by a variety of cell
      types, but their mechanism of action remains unclear.
    sentences:
      - >-
        What is the relationship between the X chromosome and a  neutrophil
        drumstick?
      - Which microRNAs are involved in exercise adaptation?
      - How are SAHFS created?
  - source_sentence: >-
      Multicluster Pcdh diversity is required for mouse olfactory neural circuit
      assembly. The vertebrate clustered protocadherin (Pcdh) cell surface
      proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ,
      and Pcdhγ). Although deletion of individual Pcdh clusters had subtle
      phenotypic consequences, the loss of all three clusters (tricluster
      deletion) led to a severe axonal arborization defect and loss of
      self-avoidance.
    sentences:
      - >-
        What are the effects of the deletion of all three Pcdh clusters
        (tricluster deletion) in mice?
      - what is the role of MEF-2 in cardiomyocyte differentiation?
      - >-
        How many periods of regulatory innovation led to the evolution of
        vertebrates?
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.8528995756718529
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9264497878359265
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9462517680339463
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.958981612446959
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8528995756718529
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3088165959453088
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.18925035360678924
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09589816124469587
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8528995756718529
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9264497878359265
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9462517680339463
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.958981612446959
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9106149406529569
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8946105835073304
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8959864574088351
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.8472418670438473
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9321074964639321
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9476661951909476
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9603960396039604
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8472418670438473
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3107024988213107
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1895332390381895
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09603960396039603
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8472418670438473
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9321074964639321
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9476661951909476
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9603960396039604
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9095270940461391
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8926230888394963
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8939142126576148
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.8359264497878359
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.925035360678925
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9405940594059405
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9533239038189534
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8359264497878359
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.30834512022630833
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1881188118811881
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09533239038189532
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8359264497878359
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.925035360678925
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9405940594059405
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9533239038189534
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9003866854175698
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8828006780269864
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8839707936250328
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.8175388967468176
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9108910891089109
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9264497878359265
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9434229137199435
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8175388967468176
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.30363036303630364
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.18528995756718525
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09434229137199433
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8175388967468176
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9108910891089109
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9264497878359265
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9434229137199435
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8862907631297875
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8674047506791496
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8686719824449951
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.7779349363507779
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8868458274398868
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9066478076379066
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9207920792079208
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7779349363507779
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2956152758132956
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1813295615275813
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09207920792079208
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7779349363507779
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8868458274398868
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9066478076379066
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9207920792079208
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8570476590886804
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.835792303720168
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8374166888522218
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("juanpablomesa/bge-base-bioasq-matryoshka")
# Run inference
sentences = [
    'Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. The vertebrate clustered protocadherin (Pcdh) cell surface proteins are encoded by three closely linked gene clusters (Pcdhα, Pcdhβ, and Pcdhγ). Although deletion of individual Pcdh clusters had subtle phenotypic consequences, the loss of all three clusters (tricluster deletion) led to a severe axonal arborization defect and loss of self-avoidance.',
    'What are the effects of the deletion of all three Pcdh clusters (tricluster deletion) in mice?',
    'How many periods of regulatory innovation led to the evolution of vertebrates?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8529
cosine_accuracy@3 0.9264
cosine_accuracy@5 0.9463
cosine_accuracy@10 0.959
cosine_precision@1 0.8529
cosine_precision@3 0.3088
cosine_precision@5 0.1893
cosine_precision@10 0.0959
cosine_recall@1 0.8529
cosine_recall@3 0.9264
cosine_recall@5 0.9463
cosine_recall@10 0.959
cosine_ndcg@10 0.9106
cosine_mrr@10 0.8946
cosine_map@100 0.896

Information Retrieval

Metric Value
cosine_accuracy@1 0.8472
cosine_accuracy@3 0.9321
cosine_accuracy@5 0.9477
cosine_accuracy@10 0.9604
cosine_precision@1 0.8472
cosine_precision@3 0.3107
cosine_precision@5 0.1895
cosine_precision@10 0.096
cosine_recall@1 0.8472
cosine_recall@3 0.9321
cosine_recall@5 0.9477
cosine_recall@10 0.9604
cosine_ndcg@10 0.9095
cosine_mrr@10 0.8926
cosine_map@100 0.8939

Information Retrieval

Metric Value
cosine_accuracy@1 0.8359
cosine_accuracy@3 0.925
cosine_accuracy@5 0.9406
cosine_accuracy@10 0.9533
cosine_precision@1 0.8359
cosine_precision@3 0.3083
cosine_precision@5 0.1881
cosine_precision@10 0.0953
cosine_recall@1 0.8359
cosine_recall@3 0.925
cosine_recall@5 0.9406
cosine_recall@10 0.9533
cosine_ndcg@10 0.9004
cosine_mrr@10 0.8828
cosine_map@100 0.884

Information Retrieval

Metric Value
cosine_accuracy@1 0.8175
cosine_accuracy@3 0.9109
cosine_accuracy@5 0.9264
cosine_accuracy@10 0.9434
cosine_precision@1 0.8175
cosine_precision@3 0.3036
cosine_precision@5 0.1853
cosine_precision@10 0.0943
cosine_recall@1 0.8175
cosine_recall@3 0.9109
cosine_recall@5 0.9264
cosine_recall@10 0.9434
cosine_ndcg@10 0.8863
cosine_mrr@10 0.8674
cosine_map@100 0.8687

Information Retrieval

Metric Value
cosine_accuracy@1 0.7779
cosine_accuracy@3 0.8868
cosine_accuracy@5 0.9066
cosine_accuracy@10 0.9208
cosine_precision@1 0.7779
cosine_precision@3 0.2956
cosine_precision@5 0.1813
cosine_precision@10 0.0921
cosine_recall@1 0.7779
cosine_recall@3 0.8868
cosine_recall@5 0.9066
cosine_recall@10 0.9208
cosine_ndcg@10 0.857
cosine_mrr@10 0.8358
cosine_map@100 0.8374

Training Details

Training Dataset

Unnamed Dataset

  • Size: 4,012 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 3 tokens
    • mean: 63.38 tokens
    • max: 485 tokens
    • min: 5 tokens
    • mean: 16.13 tokens
    • max: 49 tokens
  • Samples:
    positive anchor
    Aberrant patterns of H3K4, H3K9, and H3K27 histone lysine methylation were shown to result in histone code alterations, which induce changes in gene expression, and affect the proliferation rate of cells in medulloblastoma. What is the implication of histone lysine methylation in medulloblastoma?
    STAG1/STAG2 proteins are tumour suppressor proteins that suppress cell proliferation and are essential for differentiation. What is the role of STAG1/STAG2 proteins in differentiation?
    The association between cell phone use and incident glioblastoma remains unclear. Some studies have reported that cell phone use was associated with incident glioblastoma, and with reduced survival of patients diagnosed with glioblastoma. However, other studies have repeatedly replicated to find an association between cell phone use and glioblastoma. What is the association between cell phone use and glioblastoma?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8889 7 - 0.8674 0.8951 0.8991 0.8236 0.8996
1.2698 10 1.6285 - - - - -
1.9048 15 - 0.8662 0.8849 0.8951 0.8334 0.8945
2.5397 20 0.7273 - - - - -
2.9206 23 - 0.8681 0.8849 0.8946 0.8362 0.8967
3.5556 28 - 0.8687 0.884 0.8939 0.8374 0.896
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.5
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}