jvalline's picture
Model save
da14f17 verified
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
metrics:
- bleu
- wer
model-index:
- name: 10_randomization_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 10_randomization_model
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1399
- Bleu: 0.0001
- Wer: 0.9311
- Rougel: 0.1663
- Gen Len: 18.9987
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Wer | Rougel | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:-------:|
| 0.716 | 0.16 | 1000 | 0.2572 | 0.0001 | 0.932 | 0.1648 | 18.9987 |
| 0.2981 | 0.32 | 2000 | 0.2055 | 0.0001 | 0.9317 | 0.1655 | 18.9987 |
| 0.2596 | 0.48 | 3000 | 0.1836 | 0.0001 | 0.9315 | 0.1658 | 18.9987 |
| 0.2371 | 0.64 | 4000 | 0.1685 | 0.0001 | 0.9314 | 0.1659 | 18.9987 |
| 0.2266 | 0.8 | 5000 | 0.1616 | 0.0001 | 0.9313 | 0.1661 | 18.9987 |
| 0.2134 | 0.96 | 6000 | 0.1531 | 0.0001 | 0.9313 | 0.1662 | 18.9987 |
| 0.2035 | 1.12 | 7000 | 0.1505 | 0.0001 | 0.9312 | 0.1662 | 18.9987 |
| 0.1973 | 1.28 | 8000 | 0.1466 | 0.0001 | 0.9312 | 0.1663 | 18.9987 |
| 0.1942 | 1.44 | 9000 | 0.1430 | 0.0001 | 0.9312 | 0.1663 | 18.9987 |
| 0.1905 | 1.6 | 10000 | 0.1416 | 0.0001 | 0.9312 | 0.1663 | 18.9987 |
| 0.1892 | 1.76 | 11000 | 0.1402 | 0.0001 | 0.9312 | 0.1663 | 18.9987 |
| 0.1867 | 1.92 | 12000 | 0.1399 | 0.0001 | 0.9311 | 0.1663 | 18.9987 |
### Framework versions
- Transformers 4.37.1
- Pytorch 2.3.0.dev20240122+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1