ind-to-bbc-nmt-v5 / README.md
kepinsam's picture
End of training
d390551 verified
|
raw
history blame
2.6 kB
metadata
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
  - generated_from_trainer
datasets:
  - nusatranslation_mt
metrics:
  - sacrebleu
model-index:
  - name: ind-to-bbc-nmt-v5
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: nusatranslation_mt
          type: nusatranslation_mt
          config: nusatranslation_mt_btk_ind_source
          split: test
          args: nusatranslation_mt_btk_ind_source
        metrics:
          - name: Sacrebleu
            type: sacrebleu
            value: 31.266

ind-to-bbc-nmt-v5

This model is a fine-tuned version of facebook/nllb-200-distilled-600M on the nusatranslation_mt dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1894
  • Sacrebleu: 31.266
  • Gen Len: 44.965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Sacrebleu Gen Len
3.6651 1.0 1650 1.4838 26.4515 46.9715
1.3236 2.0 3300 1.2132 30.7977 45.688
1.0377 3.0 4950 1.1590 31.5249 45.2095
0.871 4.0 6600 1.1329 31.7139 44.965
0.7493 5.0 8250 1.1319 31.3062 45.139
0.6536 6.0 9900 1.1331 30.8031 45.242
0.5772 7.0 11550 1.1492 31.1586 45.1815
0.5195 8.0 13200 1.1684 31.0977 45.019
0.4763 9.0 14850 1.1798 31.2488 44.8915
0.4478 10.0 16500 1.1894 31.266 44.965

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.19.1