ind-to-bbc-nmt-v5 / README.md
kepinsam's picture
End of training
d390551 verified
|
raw
history blame
2.6 kB
---
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
datasets:
- nusatranslation_mt
metrics:
- sacrebleu
model-index:
- name: ind-to-bbc-nmt-v5
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: nusatranslation_mt
type: nusatranslation_mt
config: nusatranslation_mt_btk_ind_source
split: test
args: nusatranslation_mt_btk_ind_source
metrics:
- name: Sacrebleu
type: sacrebleu
value: 31.266
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ind-to-bbc-nmt-v5
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the nusatranslation_mt dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1894
- Sacrebleu: 31.266
- Gen Len: 44.965
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:-------:|
| 3.6651 | 1.0 | 1650 | 1.4838 | 26.4515 | 46.9715 |
| 1.3236 | 2.0 | 3300 | 1.2132 | 30.7977 | 45.688 |
| 1.0377 | 3.0 | 4950 | 1.1590 | 31.5249 | 45.2095 |
| 0.871 | 4.0 | 6600 | 1.1329 | 31.7139 | 44.965 |
| 0.7493 | 5.0 | 8250 | 1.1319 | 31.3062 | 45.139 |
| 0.6536 | 6.0 | 9900 | 1.1331 | 30.8031 | 45.242 |
| 0.5772 | 7.0 | 11550 | 1.1492 | 31.1586 | 45.1815 |
| 0.5195 | 8.0 | 13200 | 1.1684 | 31.0977 | 45.019 |
| 0.4763 | 9.0 | 14850 | 1.1798 | 31.2488 | 44.8915 |
| 0.4478 | 10.0 | 16500 | 1.1894 | 31.266 | 44.965 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1