metadata
tags:
- autotrain
- text-classification
language:
- en
widget:
- text: I love AutoTrain 🤗
datasets:
- kkmkorea/autotrain-data-patentmatch
co2_eq_emissions:
emissions: 54.78280971868554
Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 3547495705
- CO2 Emissions (in grams): 54.7828
Validation Metrics
- Loss: 0.226
- Accuracy: 0.948
- Precision: 0.945
- Recall: 0.952
- AUC: 0.986
- F1: 0.948
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/kkmkorea/autotrain-patentmatch-3547495705
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("kkmkorea/autotrain-patentmatch-3547495705", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("kkmkorea/autotrain-patentmatch-3547495705", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)