mt5-small-xlsum / README.md
luo
Training complete
44ebe50
metadata
license: apache-2.0
base_model: google/mt5-small
tags:
  - summarization
  - generated_from_trainer
datasets:
  - xlsum
metrics:
  - rouge
model-index:
  - name: mt5-small-xlsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xlsum
          type: xlsum
          config: ukrainian
          split: train
          args: ukrainian
        metrics:
          - name: Rouge1
            type: rouge
            value: 1.1945

mt5-small-xlsum

This model is a fine-tuned version of google/mt5-small on the xlsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8395
  • Rouge1: 1.1945
  • Rouge2: 0.1467
  • Rougel: 1.1902
  • Rougelsum: 1.196

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
11.9992 1.0 125 4.0495 0.3829 0.0 0.3905 0.3905
5.8176 2.0 250 3.3431 0.491 0.0667 0.4988 0.4821
4.9907 3.0 375 3.1548 0.6481 0.08 0.6766 0.6655
4.6486 4.0 500 3.0347 1.0105 0.1467 1.0398 1.0274
4.4541 5.0 625 2.9414 0.9581 0.1467 0.951 0.9643
4.3195 6.0 750 2.8837 1.1129 0.1467 1.1245 1.1193
4.2618 7.0 875 2.8473 1.1019 0.1467 1.1048 1.1224
4.2228 8.0 1000 2.8395 1.1945 0.1467 1.1902 1.196

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1