|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- xlsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-xlsum |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: xlsum |
|
type: xlsum |
|
config: ukrainian |
|
split: train |
|
args: ukrainian |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 1.1945 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-xlsum |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.8395 |
|
- Rouge1: 1.1945 |
|
- Rouge2: 0.1467 |
|
- Rougel: 1.1902 |
|
- Rougelsum: 1.196 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 11.9992 | 1.0 | 125 | 4.0495 | 0.3829 | 0.0 | 0.3905 | 0.3905 | |
|
| 5.8176 | 2.0 | 250 | 3.3431 | 0.491 | 0.0667 | 0.4988 | 0.4821 | |
|
| 4.9907 | 3.0 | 375 | 3.1548 | 0.6481 | 0.08 | 0.6766 | 0.6655 | |
|
| 4.6486 | 4.0 | 500 | 3.0347 | 1.0105 | 0.1467 | 1.0398 | 1.0274 | |
|
| 4.4541 | 5.0 | 625 | 2.9414 | 0.9581 | 0.1467 | 0.951 | 0.9643 | |
|
| 4.3195 | 6.0 | 750 | 2.8837 | 1.1129 | 0.1467 | 1.1245 | 1.1193 | |
|
| 4.2618 | 7.0 | 875 | 2.8473 | 1.1019 | 0.1467 | 1.1048 | 1.1224 | |
|
| 4.2228 | 8.0 | 1000 | 2.8395 | 1.1945 | 0.1467 | 1.1902 | 1.196 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|