metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: Please email the information to me.
- text: Give me a second, please.
- text: Is it possible to talk to a higher authority?
- text: Sorry, too busy to chat right now.
- text: I already own one, thanks.
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9333333333333333
name: Accuracy
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 25 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
do_not_qualify |
|
can_you_email |
|
say_again |
|
hold_a_sec |
|
language_barrier |
|
decline |
|
transfer_request |
|
scam |
|
who_are_you |
|
where_did_you_get_my_info |
|
do_not_call |
|
where_are_you_calling_from |
|
complain_calls |
|
busy |
|
greetings |
|
sorry_greeting |
|
GreetBack |
|
calling_about |
|
answering_machine |
|
weather |
|
are_you_bot |
|
affirmation |
|
not_interested |
|
already |
|
abusibve |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9333 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Give me a second, please.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 6.8375 | 13 |
Label | Training Sample Count |
---|---|
GreetBack | 9 |
abusibve | 9 |
affirmation | 10 |
already | 10 |
answering_machine | 8 |
are_you_bot | 8 |
busy | 9 |
calling_about | 8 |
can_you_email | 11 |
complain_calls | 11 |
decline | 10 |
do_not_call | 12 |
do_not_qualify | 9 |
greetings | 8 |
hold_a_sec | 8 |
language_barrier | 10 |
not_interested | 11 |
say_again | 12 |
scam | 9 |
sorry_greeting | 9 |
transfer_request | 8 |
weather | 10 |
where_are_you_calling_from | 9 |
where_did_you_get_my_info | 11 |
who_are_you | 11 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0008 | 1 | 0.1054 | - |
0.0417 | 50 | 0.1111 | - |
0.0833 | 100 | 0.0798 | - |
0.125 | 150 | 0.0826 | - |
0.1667 | 200 | 0.0308 | - |
0.2083 | 250 | 0.0324 | - |
0.25 | 300 | 0.0607 | - |
0.2917 | 350 | 0.0042 | - |
0.3333 | 400 | 0.0116 | - |
0.375 | 450 | 0.0049 | - |
0.4167 | 500 | 0.0154 | - |
0.4583 | 550 | 0.0158 | - |
0.5 | 600 | 0.0036 | - |
0.5417 | 650 | 0.001 | - |
0.5833 | 700 | 0.0015 | - |
0.625 | 750 | 0.0012 | - |
0.6667 | 800 | 0.0009 | - |
0.7083 | 850 | 0.0008 | - |
0.75 | 900 | 0.0008 | - |
0.7917 | 950 | 0.0014 | - |
0.8333 | 1000 | 0.0005 | - |
0.875 | 1050 | 0.0027 | - |
0.9167 | 1100 | 0.0007 | - |
0.9583 | 1150 | 0.0008 | - |
1.0 | 1200 | 0.0012 | - |
1.0417 | 1250 | 0.0012 | - |
1.0833 | 1300 | 0.0006 | - |
1.125 | 1350 | 0.0005 | - |
1.1667 | 1400 | 0.0003 | - |
1.2083 | 1450 | 0.0012 | - |
1.25 | 1500 | 0.0006 | - |
1.2917 | 1550 | 0.0008 | - |
1.3333 | 1600 | 0.0008 | - |
1.375 | 1650 | 0.0003 | - |
1.4167 | 1700 | 0.0004 | - |
1.4583 | 1750 | 0.0005 | - |
1.5 | 1800 | 0.0004 | - |
1.5417 | 1850 | 0.0004 | - |
1.5833 | 1900 | 0.0008 | - |
1.625 | 1950 | 0.0004 | - |
1.6667 | 2000 | 0.0004 | - |
1.7083 | 2050 | 0.0021 | - |
1.75 | 2100 | 0.0004 | - |
1.7917 | 2150 | 0.0002 | - |
1.8333 | 2200 | 0.0006 | - |
1.875 | 2250 | 0.0004 | - |
1.9167 | 2300 | 0.0006 | - |
1.9583 | 2350 | 0.0006 | - |
2.0 | 2400 | 0.0003 | - |
2.0417 | 2450 | 0.0002 | - |
2.0833 | 2500 | 0.0002 | - |
2.125 | 2550 | 0.0003 | - |
2.1667 | 2600 | 0.0004 | - |
2.2083 | 2650 | 0.0004 | - |
2.25 | 2700 | 0.0005 | - |
2.2917 | 2750 | 0.0005 | - |
2.3333 | 2800 | 0.0005 | - |
2.375 | 2850 | 0.0007 | - |
2.4167 | 2900 | 0.0002 | - |
2.4583 | 2950 | 0.0003 | - |
2.5 | 3000 | 0.0004 | - |
2.5417 | 3050 | 0.0002 | - |
2.5833 | 3100 | 0.0004 | - |
2.625 | 3150 | 0.0002 | - |
2.6667 | 3200 | 0.0002 | - |
2.7083 | 3250 | 0.0003 | - |
2.75 | 3300 | 0.0002 | - |
2.7917 | 3350 | 0.0002 | - |
2.8333 | 3400 | 0.0003 | - |
2.875 | 3450 | 0.0002 | - |
2.9167 | 3500 | 0.0002 | - |
2.9583 | 3550 | 0.0002 | - |
3.0 | 3600 | 0.0002 | - |
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.0
- PyTorch: 2.1.0
- Datasets: 2.14.6
- Tokenizers: 0.14.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}