File size: 22,366 Bytes
4decb66 b692270 4decb66 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 063bd57 65fcc53 063bd57 65fcc53 b692270 063bd57 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 063bd57 65fcc53 b692270 063bd57 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 063bd57 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 063bd57 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 063bd57 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 063bd57 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 063bd57 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 65fcc53 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 65fcc53 b692270 4decb66 b692270 65fcc53 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 4decb66 b692270 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
---
base_model: BAAI/bge-small-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:723
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: how do different regions contribute to my returns
sentences:
- '[{"get_portfolio(None)": "portfolio"}, {"filter(''portfolio'',''ticker'',''=='',''<TICKER1>'')":
"portfolio"}, {"get_attribute(''portfolio'',[''losses''],''<DATES>'')": "portfolio"}]'
- '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''region'',None,''returns'')":
"portfolio"}]'
- '[{"get_portfolio(None)": "portfolio"}, {"get_attribute(''portfolio'',[''gains''],''<DATES>'')":
"portfolio"}, {"sort(''portfolio'',''gains'',''desc'')": "portfolio"}, {"get_attribute([''<TICKER1>''],[''returns''],''<DATES>'')":
"<TICKER1>_performance_data"}]'
- source_sentence: how have I done in US equity this year?
sentences:
- '[{"get_portfolio([''weight''])": "portfolio"}, {"get_attribute(''portfolio'',[''dividend
yield''],''<DATES>'')": "portfolio"}, {"calculate(''portfolio'',[''dividend yield'',''weight''],''multiply'',''weighted_yield'')":
"portfolio"}, {"aggregate(''portfolio'',''ticker'',''weighted_yield'',''sum'',None)":
"portfolio_yield"}]'
- '[{"get_portfolio(None)": "portfolio"}, {"get_attribute(''portfolio'',[''dividend
yield''],''<DATES>'')": "portfolio"}, {"calculate(''portfolio'',[''dividend yield'',
''marketValue''],''multiply'',''div_income'')": "portfolio"}, {"sort(''portfolio'',''div_income'',''desc'')":
"portfolio"}]'
- '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''us
equity'',''returns'')": "portfolio"}]'
- source_sentence: What is the total value of my cash?
sentences:
- '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',''sector
utilities'',''portfolio'')": "portfolio"}]'
- '[{"get_portfolio([''type'', ''marketValue''])": "portfolio"}, {"filter(''portfolio'',''type'',''=='',''CASH'')":
"portfolio"}, {"aggregate(''portfolio'',''ticker'',''marketValue'',''sum'',None)":
"buying_power"}]'
- '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''sector'',''sector
information technology'',''returns'')": "portfolio"}]'
- source_sentence: What is the exposure of my account to Chinese market?
sentences:
- '[{"get_portfolio([''marketValue''])": "portfolio"}, {"sort(''portfolio'',''marketValue'',''asc'')":
"portfolio"}]'
- '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''region'',''china'',''portfolio'')":
"portfolio"}]'
- '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''volatility'',None,''portfolio'')":
"portfolio"}]'
- source_sentence: Which of my investments are projected to generate the most return?
sentences:
- '[{"get_portfolio([''marketValue''])": "portfolio"}, {"get_attribute(''portfolio'',[''<TICKER1>''],''<DATES>'')":
"portfolio"}, {"calculate(''portfolio'',[''marketValue'', ''<TICKER1>''],''multiply'',''expo_<TICKER1>'')":
"portfolio"}, {"sort(''portfolio'',''expo_<TICKER1>'',''desc'')": "portfolio"},
{"aggregate(''portfolio'',''ticker'',''expo_<TICKER1>'',''sum'',None)": "port_expo_<TICKER1>"}]'
- '[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(''portfolio'',''<DATES>'',''asset_class'',''us
equity'',''returns'')": "portfolio"}]'
- '[{"get_portfolio(None)": "portfolio"}, {"get_expected_attribute(''portfolio'',[''returns''])":
"portfolio"}, {"sort(''portfolio'',''returns'',''desc'')": "portfolio"}]'
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.6643835616438356
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8287671232876712
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.863013698630137
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9178082191780822
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6643835616438356
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27625570776255703
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17260273972602735
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0917808219178082
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.018455098934550992
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.023021308980213092
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.02397260273972603
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.02549467275494673
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.1736543171752474
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7480294629267232
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.020863027954722068
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.6643835616438356
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8287671232876712
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.863013698630137
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9178082191780822
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.6643835616438356
name: Dot Precision@1
- type: dot_precision@3
value: 0.27625570776255703
name: Dot Precision@3
- type: dot_precision@5
value: 0.17260273972602735
name: Dot Precision@5
- type: dot_precision@10
value: 0.0917808219178082
name: Dot Precision@10
- type: dot_recall@1
value: 0.018455098934550992
name: Dot Recall@1
- type: dot_recall@3
value: 0.023021308980213092
name: Dot Recall@3
- type: dot_recall@5
value: 0.02397260273972603
name: Dot Recall@5
- type: dot_recall@10
value: 0.02549467275494673
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.1736543171752474
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7480294629267232
name: Dot Mrr@10
- type: dot_map@100
value: 0.020863027954722068
name: Dot Map@100
---
# SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Which of my investments are projected to generate the most return?',
'[{"get_portfolio(None)": "portfolio"}, {"get_expected_attribute(\'portfolio\',[\'returns\'])": "portfolio"}, {"sort(\'portfolio\',\'returns\',\'desc\')": "portfolio"}]',
'[{"get_portfolio(None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'asset_class\',\'us equity\',\'returns\')": "portfolio"}]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6644 |
| cosine_accuracy@3 | 0.8288 |
| cosine_accuracy@5 | 0.863 |
| cosine_accuracy@10 | 0.9178 |
| cosine_precision@1 | 0.6644 |
| cosine_precision@3 | 0.2763 |
| cosine_precision@5 | 0.1726 |
| cosine_precision@10 | 0.0918 |
| cosine_recall@1 | 0.0185 |
| cosine_recall@3 | 0.023 |
| cosine_recall@5 | 0.024 |
| cosine_recall@10 | 0.0255 |
| cosine_ndcg@10 | 0.1737 |
| cosine_mrr@10 | 0.748 |
| **cosine_map@100** | **0.0209** |
| dot_accuracy@1 | 0.6644 |
| dot_accuracy@3 | 0.8288 |
| dot_accuracy@5 | 0.863 |
| dot_accuracy@10 | 0.9178 |
| dot_precision@1 | 0.6644 |
| dot_precision@3 | 0.2763 |
| dot_precision@5 | 0.1726 |
| dot_precision@10 | 0.0918 |
| dot_recall@1 | 0.0185 |
| dot_recall@3 | 0.023 |
| dot_recall@5 | 0.024 |
| dot_recall@10 | 0.0255 |
| dot_ndcg@10 | 0.1737 |
| dot_mrr@10 | 0.748 |
| dot_map@100 | 0.0209 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 723 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 11.8 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 84.41 tokens</li><li>max: 194 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:--------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is my portfolio 3 year cagr?</code> | <code>[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'<DATES>')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]</code> |
| <code>what is my 1 year rate of return</code> | <code>[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'<DATES>')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]</code> |
| <code>show backtest of my performance this year?</code> | <code>[{"get_portfolio(None)": "portfolio"}, {"get_attribute('portfolio',['gains'],'<DATES>')": "portfolio"}, {"sort('portfolio','gains','desc')": "portfolio"}]</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 6
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 6
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 0.0274 | 2 | 0.0136 |
| 0.0548 | 4 | 0.0137 |
| 0.0822 | 6 | 0.0139 |
| 0.1096 | 8 | 0.0142 |
| 0.1370 | 10 | 0.0145 |
| 0.1644 | 12 | 0.0144 |
| 0.1918 | 14 | 0.0147 |
| 0.2192 | 16 | 0.0151 |
| 0.2466 | 18 | 0.0153 |
| 0.2740 | 20 | 0.0158 |
| 0.3014 | 22 | 0.0165 |
| 0.3288 | 24 | 0.0163 |
| 0.3562 | 26 | 0.0167 |
| 0.3836 | 28 | 0.0171 |
| 0.4110 | 30 | 0.0175 |
| 0.4384 | 32 | 0.0177 |
| 0.4658 | 34 | 0.0180 |
| 0.4932 | 36 | 0.0183 |
| 0.5205 | 38 | 0.0185 |
| 0.5479 | 40 | 0.0186 |
| 0.5753 | 42 | 0.0186 |
| 0.6027 | 44 | 0.0186 |
| 0.6301 | 46 | 0.0186 |
| 0.6575 | 48 | 0.0187 |
| 0.6849 | 50 | 0.0189 |
| 0.7123 | 52 | 0.0190 |
| 0.7397 | 54 | 0.0189 |
| 0.7671 | 56 | 0.0188 |
| 0.7945 | 58 | 0.0189 |
| 0.8219 | 60 | 0.0192 |
| 0.8493 | 62 | 0.0193 |
| 0.8767 | 64 | 0.0194 |
| 0.9041 | 66 | 0.0194 |
| 0.9315 | 68 | 0.0197 |
| 0.9589 | 70 | 0.0200 |
| 0.9863 | 72 | 0.0201 |
| 1.0 | 73 | 0.0202 |
| 1.0137 | 74 | 0.0203 |
| 1.0411 | 76 | 0.0202 |
| 1.0685 | 78 | 0.0203 |
| 1.0959 | 80 | 0.0205 |
| 1.1233 | 82 | 0.0207 |
| 1.1507 | 84 | 0.0207 |
| 1.1781 | 86 | 0.0206 |
| 1.2055 | 88 | 0.0205 |
| 1.2329 | 90 | 0.0205 |
| 1.2603 | 92 | 0.0205 |
| 1.2877 | 94 | 0.0204 |
| 1.3151 | 96 | 0.0204 |
| 1.3425 | 98 | 0.0205 |
| 1.3699 | 100 | 0.0205 |
| 1.3973 | 102 | 0.0205 |
| 1.4247 | 104 | 0.0205 |
| 1.4521 | 106 | 0.0204 |
| 1.4795 | 108 | 0.0205 |
| 1.5068 | 110 | 0.0208 |
| 1.5342 | 112 | 0.0206 |
| 1.5616 | 114 | 0.0205 |
| 1.5890 | 116 | 0.0206 |
| 1.6164 | 118 | 0.0205 |
| 1.6438 | 120 | 0.0205 |
| 1.6712 | 122 | 0.0205 |
| 1.6986 | 124 | 0.0207 |
| 1.7260 | 126 | 0.0207 |
| 1.7534 | 128 | 0.0207 |
| 1.7808 | 130 | 0.0205 |
| 1.8082 | 132 | 0.0206 |
| 1.8356 | 134 | 0.0208 |
| 1.8630 | 136 | 0.0206 |
| 1.8904 | 138 | 0.0206 |
| 1.9178 | 140 | 0.0206 |
| 1.9452 | 142 | 0.0205 |
| 1.9726 | 144 | 0.0206 |
| 2.0 | 146 | 0.0207 |
| 2.0274 | 148 | 0.0209 |
### Framework Versions
- Python: 3.10.9
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |