|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: opus-mt-en-es-finetuned-es-to-maq |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# opus-mt-en-es-finetuned-es-to-maq |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-es](https://huggingface.co/Helsinki-NLP/opus-mt-en-es) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7414 |
|
- Bleu: 6.663 |
|
- Gen Len: 94.437 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| |
|
| No log | 1.0 | 199 | 2.3505 | 2.7386 | 127.0327 | |
|
| No log | 2.0 | 398 | 2.0862 | 4.4403 | 97.3489 | |
|
| 2.643 | 3.0 | 597 | 1.9576 | 5.2104 | 98.7116 | |
|
| 2.643 | 4.0 | 796 | 1.8831 | 5.4016 | 98.4962 | |
|
| 2.643 | 5.0 | 995 | 1.8320 | 5.6026 | 96.1826 | |
|
| 1.9678 | 6.0 | 1194 | 1.7944 | 6.374 | 95.1398 | |
|
| 1.9678 | 7.0 | 1393 | 1.7726 | 6.514 | 94.83 | |
|
| 1.8281 | 8.0 | 1592 | 1.7551 | 6.7802 | 95.194 | |
|
| 1.8281 | 9.0 | 1791 | 1.7451 | 6.7625 | 94.2091 | |
|
| 1.8281 | 10.0 | 1990 | 1.7414 | 6.663 | 94.437 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|