|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: opus-mt-en-es-finetuned-es-to-maz |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# opus-mt-en-es-finetuned-es-to-maz |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-es](https://huggingface.co/Helsinki-NLP/opus-mt-en-es) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6048 |
|
- Bleu: 4.3691 |
|
- Gen Len: 90.628 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| |
|
| No log | 1.0 | 197 | 2.2612 | 1.6643 | 112.3057 | |
|
| No log | 2.0 | 394 | 1.9432 | 2.2102 | 95.5885 | |
|
| 2.5492 | 3.0 | 591 | 1.8172 | 2.8502 | 95.6293 | |
|
| 2.5492 | 4.0 | 788 | 1.7422 | 3.156 | 92.9006 | |
|
| 2.5492 | 5.0 | 985 | 1.6962 | 3.2496 | 91.9032 | |
|
| 1.8541 | 6.0 | 1182 | 1.6573 | 3.6696 | 91.0064 | |
|
| 1.8541 | 7.0 | 1379 | 1.6345 | 3.8424 | 90.5987 | |
|
| 1.7136 | 8.0 | 1576 | 1.6158 | 4.0247 | 91.6229 | |
|
| 1.7136 | 9.0 | 1773 | 1.6077 | 4.2614 | 89.265 | |
|
| 1.7136 | 10.0 | 1970 | 1.6048 | 4.3691 | 90.628 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|