|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-funsd |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-funsd |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5930 |
|
- Precision: 0.7981 |
|
- Recall: 0.8675 |
|
- F1: 0.8313 |
|
- Accuracy: 0.8104 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 150 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.67 | 25 | 1.2209 | 0.4642 | 0.5155 | 0.4885 | 0.6559 | |
|
| No log | 3.33 | 50 | 0.8172 | 0.7324 | 0.776 | 0.7536 | 0.7619 | |
|
| No log | 5.0 | 75 | 0.6125 | 0.7876 | 0.8435 | 0.8146 | 0.8126 | |
|
| No log | 6.67 | 100 | 0.5984 | 0.8053 | 0.8665 | 0.8348 | 0.8107 | |
|
| No log | 8.33 | 125 | 0.5674 | 0.8040 | 0.8715 | 0.8364 | 0.8217 | |
|
| No log | 10.0 | 150 | 0.5930 | 0.7981 | 0.8675 | 0.8313 | 0.8104 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.12.5 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 2.13.2 |
|
- Tokenizers 0.10.1 |
|
|