metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
- f1
model-index:
- name: deberta-v3-ft-news-sentiment-analisys
results: []
deberta-v3-ft-news-sentiment-analisys
This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1175
- Precision: 0.9780
- Recall: 0.9780
- Accuracy: 0.9780
- F1: 0.9780
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 64 | 0.3711 | 0.8282 | 0.8282 | 0.8282 | 0.8282 |
No log | 2.0 | 128 | 0.1800 | 0.9559 | 0.9559 | 0.9559 | 0.9559 |
No log | 3.0 | 192 | 0.1296 | 0.9604 | 0.9604 | 0.9604 | 0.9604 |
No log | 4.0 | 256 | 0.1228 | 0.9736 | 0.9736 | 0.9736 | 0.9736 |
No log | 5.0 | 320 | 0.1352 | 0.9736 | 0.9736 | 0.9736 | 0.9736 |
No log | 6.0 | 384 | 0.1785 | 0.9648 | 0.9648 | 0.9648 | 0.9648 |
No log | 7.0 | 448 | 0.1175 | 0.9780 | 0.9780 | 0.9780 | 0.9780 |
0.1612 | 8.0 | 512 | 0.1344 | 0.9692 | 0.9692 | 0.9692 | 0.9692 |
0.1612 | 9.0 | 576 | 0.1274 | 0.9648 | 0.9648 | 0.9648 | 0.9648 |
0.1612 | 10.0 | 640 | 0.1242 | 0.9692 | 0.9692 | 0.9692 | 0.9692 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0