mrm8488's picture
End of training
6bfb409 verified
|
raw
history blame
2.41 kB
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
  - f1
model-index:
  - name: deberta-v3-ft-news-sentiment-analisys
    results: []

deberta-v3-ft-news-sentiment-analisys

This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1175
  • Precision: 0.9780
  • Recall: 0.9780
  • Accuracy: 0.9780
  • F1: 0.9780

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall Accuracy F1
No log 1.0 64 0.3711 0.8282 0.8282 0.8282 0.8282
No log 2.0 128 0.1800 0.9559 0.9559 0.9559 0.9559
No log 3.0 192 0.1296 0.9604 0.9604 0.9604 0.9604
No log 4.0 256 0.1228 0.9736 0.9736 0.9736 0.9736
No log 5.0 320 0.1352 0.9736 0.9736 0.9736 0.9736
No log 6.0 384 0.1785 0.9648 0.9648 0.9648 0.9648
No log 7.0 448 0.1175 0.9780 0.9780 0.9780 0.9780
0.1612 8.0 512 0.1344 0.9692 0.9692 0.9692 0.9692
0.1612 9.0 576 0.1274 0.9648 0.9648 0.9648 0.9648
0.1612 10.0 640 0.1242 0.9692 0.9692 0.9692 0.9692

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0