|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: deberta-v3-ft-news-sentiment-analisys |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-ft-news-sentiment-analisys |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1175 |
|
- Precision: 0.9780 |
|
- Recall: 0.9780 |
|
- Accuracy: 0.9780 |
|
- F1: 0.9780 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:------:| |
|
| No log | 1.0 | 64 | 0.3711 | 0.8282 | 0.8282 | 0.8282 | 0.8282 | |
|
| No log | 2.0 | 128 | 0.1800 | 0.9559 | 0.9559 | 0.9559 | 0.9559 | |
|
| No log | 3.0 | 192 | 0.1296 | 0.9604 | 0.9604 | 0.9604 | 0.9604 | |
|
| No log | 4.0 | 256 | 0.1228 | 0.9736 | 0.9736 | 0.9736 | 0.9736 | |
|
| No log | 5.0 | 320 | 0.1352 | 0.9736 | 0.9736 | 0.9736 | 0.9736 | |
|
| No log | 6.0 | 384 | 0.1785 | 0.9648 | 0.9648 | 0.9648 | 0.9648 | |
|
| No log | 7.0 | 448 | 0.1175 | 0.9780 | 0.9780 | 0.9780 | 0.9780 | |
|
| 0.1612 | 8.0 | 512 | 0.1344 | 0.9692 | 0.9692 | 0.9692 | 0.9692 | |
|
| 0.1612 | 9.0 | 576 | 0.1274 | 0.9648 | 0.9648 | 0.9648 | 0.9648 | |
|
| 0.1612 | 10.0 | 640 | 0.1242 | 0.9692 | 0.9692 | 0.9692 | 0.9692 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|