mufathurrohman's picture
First training complete
a97a61a verified
metadata
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
  - generated_from_trainer
datasets:
  - nergrit
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-finetuned-ner-nergrit-8H-light
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: nergrit
          type: nergrit
          config: nergrit_ner_seacrowd_seq_label
          split: validation
          args: nergrit_ner_seacrowd_seq_label
        metrics:
          - name: Precision
            type: precision
            value: 0.981006671007531
          - name: Recall
            type: recall
            value: 0.9810548818694482
          - name: F1
            type: f1
            value: 0.9810307758461823
          - name: Accuracy
            type: accuracy
            value: 0.9772770466099682

roberta-finetuned-ner-nergrit-8H-light

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the nergrit dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1130
  • Precision: 0.9810
  • Recall: 0.9811
  • F1: 0.9810
  • Accuracy: 0.9773

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9994 392 0.1196 0.9793 0.9800 0.9796 0.9757
0.1919 1.9987 784 0.1048 0.9810 0.9814 0.9812 0.9775
0.0823 2.9981 1176 0.1130 0.9810 0.9811 0.9810 0.9773

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1