mufathurrohman's picture
First training complete
2de95a2 verified
metadata
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
  - generated_from_trainer
datasets:
  - nergrit
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-finetuned-ner-nergrit-9H
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: nergrit
          type: nergrit
          config: nergrit_ner_seacrowd_seq_label
          split: test
          args: nergrit_ner_seacrowd_seq_label
        metrics:
          - name: Precision
            type: precision
            value: 0.9333290962247363
          - name: Recall
            type: recall
            value: 0.9402010371982842
          - name: F1
            type: f1
            value: 0.9367524638790548
          - name: Accuracy
            type: accuracy
            value: 0.9811414616497829

roberta-finetuned-ner-nergrit-9H

This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the nergrit dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0982
  • Precision: 0.9333
  • Recall: 0.9402
  • F1: 0.9368
  • Accuracy: 0.9811

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9995 471 0.0979 0.9354 0.9229 0.9291 0.9795
0.2005 1.9989 942 0.0967 0.9376 0.9356 0.9366 0.9811
0.0863 2.9984 1413 0.0982 0.9333 0.9402 0.9368 0.9811

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1