muhtasham's picture
Update README.md
8550569
|
raw
history blame
2.22 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - finer-139
  - nlpaueb/finer-139
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bertiny-finetuned-finer
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: finer-139
          type: finer-139
          args: finer-139
        metrics:
          - name: Precision
            type: precision
            value: 0.5339285714285714
          - name: Recall
            type: recall
            value: 0.036011080332409975
          - name: F1
            type: f1
            value: 0.06747151077513258
          - name: Accuracy
            type: accuracy
            value: 0.9847166143263048

bertiny-finetuned-finer

This model is a fine-tuned version of google/bert_uncased_L-2_H-128_A-2 on the finer-139 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0882
  • Precision: 0.5339
  • Recall: 0.0360
  • F1: 0.0675
  • Accuracy: 0.9847

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0871 1.0 11255 0.0952 0.0 0.0 0.0 0.9843
0.0864 2.0 22510 0.0895 0.7640 0.0082 0.0162 0.9844
0.0929 3.0 33765 0.0882 0.5339 0.0360 0.0675 0.9847

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.3.2
  • Tokenizers 0.12.1