|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- finer-139 |
|
- nlpaueb/finer-139 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bertiny-finetuned-finer |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: finer-139 |
|
type: finer-139 |
|
args: finer-139 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.5339285714285714 |
|
- name: Recall |
|
type: recall |
|
value: 0.036011080332409975 |
|
- name: F1 |
|
type: f1 |
|
value: 0.06747151077513258 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9847166143263048 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bertiny-finetuned-finer |
|
|
|
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the finer-139 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0882 |
|
- Precision: 0.5339 |
|
- Recall: 0.0360 |
|
- F1: 0.0675 |
|
- Accuracy: 0.9847 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0871 | 1.0 | 11255 | 0.0952 | 0.0 | 0.0 | 0.0 | 0.9843 | |
|
| 0.0864 | 2.0 | 22510 | 0.0895 | 0.7640 | 0.0082 | 0.0162 | 0.9844 | |
|
| 0.0929 | 3.0 | 33765 | 0.0882 | 0.5339 | 0.0360 | 0.0675 | 0.9847 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.12.0+cu113 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|