|
--- |
|
license: apache-2.0 |
|
base_model: docketanalyzer/docket-lm-xs |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: initial_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# initial_model |
|
|
|
This model is a fine-tuned version of [docketanalyzer/docket-lm-xs](https://huggingface.co/docketanalyzer/docket-lm-xs) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0187 |
|
- F1: 0.9938 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 30 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 0.2297 | 0.0533 | 60 | 0.1805 | 0.9693 | |
|
| 0.1411 | 0.1067 | 120 | 0.0593 | 0.9850 | |
|
| 0.0099 | 0.16 | 180 | 0.0447 | 0.9908 | |
|
| 0.0348 | 0.2133 | 240 | 0.0474 | 0.9892 | |
|
| 0.0046 | 0.2667 | 300 | 0.0379 | 0.9923 | |
|
| 0.0031 | 0.32 | 360 | 0.0334 | 0.9938 | |
|
| 0.127 | 0.3733 | 420 | 0.0325 | 0.9933 | |
|
| 0.1795 | 0.4267 | 480 | 0.0325 | 0.9928 | |
|
| 0.0023 | 0.48 | 540 | 0.0364 | 0.9933 | |
|
| 0.0028 | 0.5333 | 600 | 0.0353 | 0.9923 | |
|
| 0.0043 | 0.5867 | 660 | 0.0290 | 0.9933 | |
|
| 0.1299 | 0.64 | 720 | 0.0252 | 0.9938 | |
|
| 0.188 | 0.6933 | 780 | 0.0235 | 0.9933 | |
|
| 0.0019 | 0.7467 | 840 | 0.0208 | 0.9938 | |
|
| 0.002 | 0.8 | 900 | 0.0199 | 0.9938 | |
|
| 0.0525 | 0.8533 | 960 | 0.0192 | 0.9938 | |
|
| 0.008 | 0.9067 | 1020 | 0.0190 | 0.9938 | |
|
| 0.0013 | 0.96 | 1080 | 0.0193 | 0.9938 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.19.1 |
|
|