ndeclarke's picture
End of training
0df5897 verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-yoruba-colab-CV17.0-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: yo
          split: test
          args: yo
        metrics:
          - name: Wer
            type: wer
            value: 0.5771575538197752

w2v-bert-2.0-yoruba-colab-CV17.0-v2

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8450
  • Wer: 0.5772

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.7641 3.0769 200 1.0220 0.7877
0.6684 6.1538 400 0.9003 0.6490
0.4959 9.2308 600 0.9080 0.7072
0.359 12.3077 800 0.9788 0.6147
0.2047 15.3846 1000 1.0914 0.6017
0.0858 18.4615 1200 1.4604 0.5973
0.0426 21.5385 1400 1.5740 0.5988
0.0088 24.6154 1600 1.7418 0.5753
0.0017 27.6923 1800 1.8206 0.5779
0.001 30.7692 2000 1.8450 0.5772

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1