ndeclarke's picture
End of training
7a6ba8e verified
metadata
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
  - bleu
model-index:
  - name: wav2vec2-mms-1b-malayalam-colab-CV17.0-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ml
          split: test
          args: ml
        metrics:
          - name: Wer
            type: wer
            value: 0.5283687943262412
          - name: Bleu
            type: bleu
            value: 0.1996948603256558

wav2vec2-mms-1b-malayalam-colab-CV17.0-v2

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2965
  • Wer: 0.5284
  • Cer: 0.0934
  • Bleu: 0.1997

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bleu
5.5563 3.1496 200 0.3157 0.5580 0.1055 0.1800
0.3888 6.2992 400 0.2983 0.5471 0.1003 0.1906
0.3328 9.4488 600 0.3008 0.5542 0.1002 0.1634
0.3006 12.5984 800 0.2821 0.5368 0.0984 0.1888
0.2743 15.7480 1000 0.2913 0.5329 0.0968 0.1813
0.2461 18.8976 1200 0.2822 0.5319 0.0957 0.1937
0.2346 22.0472 1400 0.2933 0.5335 0.0942 0.1848
0.2112 25.1969 1600 0.2885 0.5300 0.0947 0.1900
0.2006 28.3465 1800 0.2944 0.5329 0.0939 0.1870
0.1879 31.4961 2000 0.2965 0.5284 0.0934 0.1997

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1