|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/mms-1b-all |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_17_0 |
|
metrics: |
|
- wer |
|
- bleu |
|
model-index: |
|
- name: wav2vec2-mms-1b-malayalam-colab-CV17.0-v2 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_17_0 |
|
type: common_voice_17_0 |
|
config: ml |
|
split: test |
|
args: ml |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.5283687943262412 |
|
- name: Bleu |
|
type: bleu |
|
value: 0.1996948603256558 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-mms-1b-malayalam-colab-CV17.0-v2 |
|
|
|
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2965 |
|
- Wer: 0.5284 |
|
- Cer: 0.0934 |
|
- Bleu: 0.1997 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.15 |
|
- training_steps: 2000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu | |
|
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|:------:| |
|
| 5.5563 | 3.1496 | 200 | 0.3157 | 0.5580 | 0.1055 | 0.1800 | |
|
| 0.3888 | 6.2992 | 400 | 0.2983 | 0.5471 | 0.1003 | 0.1906 | |
|
| 0.3328 | 9.4488 | 600 | 0.3008 | 0.5542 | 0.1002 | 0.1634 | |
|
| 0.3006 | 12.5984 | 800 | 0.2821 | 0.5368 | 0.0984 | 0.1888 | |
|
| 0.2743 | 15.7480 | 1000 | 0.2913 | 0.5329 | 0.0968 | 0.1813 | |
|
| 0.2461 | 18.8976 | 1200 | 0.2822 | 0.5319 | 0.0957 | 0.1937 | |
|
| 0.2346 | 22.0472 | 1400 | 0.2933 | 0.5335 | 0.0942 | 0.1848 | |
|
| 0.2112 | 25.1969 | 1600 | 0.2885 | 0.5300 | 0.0947 | 0.1900 | |
|
| 0.2006 | 28.3465 | 1800 | 0.2944 | 0.5329 | 0.0939 | 0.1870 | |
|
| 0.1879 | 31.4961 | 2000 | 0.2965 | 0.5284 | 0.0934 | 0.1997 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|