|
--- |
|
language: |
|
- mn |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xlm-roberta-base-mongolian-ner |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-base-mongolian-ner |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1166 |
|
- Precision: 0.9251 |
|
- Recall: 0.9335 |
|
- F1: 0.9293 |
|
- Accuracy: 0.9787 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.2013 | 1.0 | 477 | 0.0958 | 0.8951 | 0.9124 | 0.9037 | 0.9731 | |
|
| 0.0846 | 2.0 | 954 | 0.0825 | 0.9155 | 0.9240 | 0.9197 | 0.9774 | |
|
| 0.0622 | 3.0 | 1431 | 0.0844 | 0.9109 | 0.9235 | 0.9172 | 0.9766 | |
|
| 0.0456 | 4.0 | 1908 | 0.0940 | 0.9174 | 0.9266 | 0.9220 | 0.9767 | |
|
| 0.0347 | 5.0 | 2385 | 0.1015 | 0.9184 | 0.9284 | 0.9234 | 0.9770 | |
|
| 0.0253 | 6.0 | 2862 | 0.1117 | 0.9174 | 0.9254 | 0.9214 | 0.9764 | |
|
| 0.0203 | 7.0 | 3339 | 0.1147 | 0.9225 | 0.9310 | 0.9267 | 0.9780 | |
|
| 0.0152 | 8.0 | 3816 | 0.1129 | 0.9229 | 0.9316 | 0.9272 | 0.9779 | |
|
| 0.0129 | 9.0 | 4293 | 0.1150 | 0.9245 | 0.9324 | 0.9285 | 0.9784 | |
|
| 0.0102 | 10.0 | 4770 | 0.1166 | 0.9251 | 0.9335 | 0.9293 | 0.9787 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|