|
--- |
|
license: apache-2.0 |
|
base_model: facebook/deit-tiny-patch16-224 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: deit-tiny-patch16-224-RESISC45_01 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deit-tiny-patch16-224-RESISC45_01 |
|
|
|
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3266 |
|
- Accuracy: 0.912 |
|
- Precision: 0.9184 |
|
- Recall: 0.912 |
|
- F1: 0.9127 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 512 |
|
- eval_batch_size: 512 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 2.1588 | 1.0 | 37 | 1.4843 | 0.716 | 0.7429 | 0.716 | 0.7079 | |
|
| 1.1043 | 2.0 | 74 | 0.8240 | 0.825 | 0.8391 | 0.825 | 0.8245 | |
|
| 0.801 | 3.0 | 111 | 0.5870 | 0.866 | 0.8733 | 0.866 | 0.8660 | |
|
| 0.6546 | 4.0 | 148 | 0.4760 | 0.885 | 0.8916 | 0.885 | 0.8852 | |
|
| 0.5632 | 5.0 | 185 | 0.4202 | 0.896 | 0.9038 | 0.896 | 0.8963 | |
|
| 0.5004 | 6.0 | 222 | 0.3792 | 0.895 | 0.9046 | 0.895 | 0.8953 | |
|
| 0.4392 | 7.0 | 259 | 0.3483 | 0.906 | 0.9126 | 0.906 | 0.9067 | |
|
| 0.4358 | 8.0 | 296 | 0.3436 | 0.907 | 0.9150 | 0.907 | 0.9084 | |
|
| 0.4208 | 9.0 | 333 | 0.3298 | 0.908 | 0.9135 | 0.908 | 0.9086 | |
|
| 0.4148 | 10.0 | 370 | 0.3266 | 0.912 | 0.9184 | 0.912 | 0.9127 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|