|
--- |
|
license: mit |
|
base_model: gpt2 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imdb |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: results |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: imdb |
|
type: imdb |
|
config: plain_text |
|
split: train |
|
args: plain_text |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9330666661262512 |
|
- name: Precision |
|
type: precision |
|
value: 0.9330666661262512 |
|
- name: Recall |
|
type: recall |
|
value: 0.9330666661262512 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9330666661262512 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# results |
|
|
|
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the imdb dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2797 |
|
- Accuracy: 0.9331 |
|
- Precision: 0.9331 |
|
- Recall: 0.9331 |
|
- F1: 0.9331 |
|
- Auroc: 0.9810 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | Auroc | F1 | Validation Loss | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:--------:|:------:|:------:|:---------------:|:---------:|:------:| |
|
| 0.1436 | 0.46 | 500 | 0.8935 | 0.9751 | 0.8935 | 0.2923 | 0.8935 | 0.8935 | |
|
| 0.1621 | 0.91 | 1000 | 0.9261 | 0.9789 | 0.9261 | 0.1984 | 0.9261 | 0.9261 | |
|
| 0.2196 | 1.37 | 1500 | 0.9289 | 0.9810 | 0.9289 | 0.2082 | 0.9289 | 0.9289 | |
|
| 0.1457 | 1.83 | 2000 | 0.9325 | 0.9816 | 0.9325 | 0.2282 | 0.9325 | 0.9325 | |
|
| 0.1103 | 2.29 | 2500 | 0.9305 | 0.9806 | 0.9305 | 0.3201 | 0.9305 | 0.9305 | |
|
| 0.0679 | 2.74 | 3000 | 0.2797 | 0.9331 | 0.9331 | 0.9331 | 0.9331 | 0.9810 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|