|
--- |
|
license: apache-2.0 |
|
base_model: google-t5/t5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: SummarEaseV1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# SummarEaseV1 |
|
|
|
This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.4382 |
|
- Rouge1: 0.2458 |
|
- Rouge2: 0.1168 |
|
- Rougel: 0.2008 |
|
- Rougelsum: 0.2001 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 0.7619 | 3 | 2.5665 | 0.2388 | 0.1118 | 0.1962 | 0.1959 | 19.0 | |
|
| No log | 1.7778 | 7 | 2.4863 | 0.2439 | 0.1153 | 0.2005 | 0.1996 | 19.0 | |
|
| No log | 2.7937 | 11 | 2.4462 | 0.2461 | 0.1169 | 0.2009 | 0.2003 | 19.0 | |
|
| No log | 3.0476 | 12 | 2.4382 | 0.2458 | 0.1168 | 0.2008 | 0.2001 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|