nrshoudi's picture
End of training
4fac17e verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec_arabic_mdd_v2
    results: []

wav2vec_arabic_mdd_v2

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2736
  • Wer: 0.0492
  • Cer: 0.0378

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
5.2969 0.9951 102 4.4152 1.0 1.0
3.2462 2.0 205 3.2917 1.0 1.0
3.1998 2.9951 307 3.2287 1.0 1.0
3.2577 4.0 410 3.1610 1.0 1.0
2.4548 4.9951 512 2.5563 0.9881 0.9914
0.678 6.0 615 0.7636 0.2986 0.2701
0.1777 6.9951 717 0.3790 0.0925 0.0781
0.1097 8.0 820 0.3732 0.0865 0.0694
0.0737 8.9951 922 0.3027 0.0641 0.0511
0.0526 10.0 1025 0.2834 0.0699 0.0578
0.0471 10.9951 1127 0.2601 0.0541 0.0435
0.0349 12.0 1230 0.2803 0.0518 0.0396
0.029 12.9951 1332 0.2710 0.0502 0.0378
0.0225 14.0 1435 0.2835 0.0494 0.0378
0.023 14.9951 1537 0.2909 0.0483 0.0368
0.0247 16.0 1640 0.2725 0.0480 0.0361
0.035 16.9951 1742 0.2696 0.0489 0.0372
0.0156 18.0 1845 0.2742 0.0482 0.0364
0.0183 18.9951 1947 0.2741 0.0492 0.0376
0.0179 19.9024 2040 0.2736 0.0492 0.0378

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1