|
--- |
|
license: mit |
|
datasets: |
|
- nsarrazin/lichess-games-2023-01 |
|
pipeline_tag: text-generation |
|
tags: |
|
- chess |
|
--- |
|
|
|
A 231M parameter base model trained on 4.4B tokens of lichess games from January 2023 that ended in checkmate (filtered out games that were won because of time). |
|
|
|
## Inference |
|
```py |
|
from transformers import GPT2LMHeadModel, AutoTokenizer |
|
|
|
model = GPT2LMHeadModel.from_pretrained("nsarrazin/chessformer").eval() |
|
tokenizer = AutoTokenizer.from_pretrained("nsarrazin/chessformer") |
|
|
|
moves = " ".join(["e2e4", "e7e5", "d2d4", "d7d5"]) |
|
|
|
model_inputs = tokenizer(moves, return_tensors="pt") |
|
gen_tokens = model.generate(**model_inputs, max_new_tokens=1)[0] |
|
next_move = tokenizer.decode(gen_tokens[-1]) |
|
|
|
print(next_move) #d4e5 |
|
``` |
|
|
|
### End of game detection |
|
|
|
The model also has three special tokens for end game detection `<BLACK_WIN>`, `<WHITE_WIN>` and `<DRAW>`. This can be useful for implementing beam search strategies. |
|
|
|
```py |
|
moves = " ".join(["f2f3", "e7e5", "g2g4", "d8h4"]) |
|
|
|
model_inputs = tokenizer(moves, return_tensors="pt") |
|
gen_tokens = model.generate(**model_inputs, max_new_tokens=1)[0] |
|
next_move = tokenizer.decode(gen_tokens[-1]) |
|
|
|
print(next_move) # <BLACK_WIN> |
|
``` |
|
|
|
|
|
|