phunc20's picture
update model card README.md
0960c46
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-wuhan
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4

swin-tiny-patch4-window7-224-finetuned-wuhan

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7953
  • Accuracy: 0.4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 3 0.7953 0.4
No log 2.0 6 0.9477 0.4
No log 3.0 9 1.0106 0.4
0.5883 4.0 12 1.4170 0.4
0.5883 5.0 15 1.7436 0.4
0.5883 6.0 18 2.5380 0.4
0.241 7.0 21 3.8803 0.4
0.241 8.0 24 2.4040 0.2222
0.241 9.0 27 3.9968 0.4
0.125 10.0 30 3.2731 0.4
0.125 11.0 33 3.2202 0.2222
0.125 12.0 36 4.7008 0.4
0.125 13.0 39 4.5588 0.3556
0.0766 14.0 42 4.5434 0.2444
0.0766 15.0 45 4.9792 0.2667
0.0766 16.0 48 5.4095 0.2667
0.0239 17.0 51 5.8507 0.2222
0.0239 18.0 54 6.1023 0.2222
0.0239 19.0 57 6.1666 0.2222
0.0129 20.0 60 6.1948 0.2222

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.1
  • Tokenizers 0.13.3