SentenceTransformer based on distilbert/distilbert-base-uncased
This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Salinity gradients in oceans affect local wildlife habitats.',
'The distribution of wildlife in different habitats has fascinated ecologists for decades.',
'[SYNTAX] Bioenergy plants can convert agricultural waste into valuable electricity.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
custom-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9117 |
spearman_cosine | 0.8442 |
pearson_manhattan | 0.9157 |
spearman_manhattan | 0.8441 |
pearson_euclidean | 0.916 |
spearman_euclidean | 0.8446 |
pearson_dot | 0.9046 |
spearman_dot | 0.8328 |
pearson_max | 0.916 |
spearman_max | 0.8446 |
Semantic Similarity
- Dataset:
custom-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9198 |
spearman_cosine | 0.8501 |
pearson_manhattan | 0.9282 |
spearman_manhattan | 0.8494 |
pearson_euclidean | 0.9284 |
spearman_euclidean | 0.8498 |
pearson_dot | 0.9141 |
spearman_dot | 0.8411 |
pearson_max | 0.9284 |
spearman_max | 0.8501 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 19,352 training samples
- Columns:
s1
,s2
, andlabel
- Approximate statistics based on the first 1000 samples:
s1 s2 label type string string int details - min: 10 tokens
- mean: 19.92 tokens
- max: 42 tokens
- min: 10 tokens
- mean: 20.53 tokens
- max: 42 tokens
- 0: ~50.50%
- 1: ~49.50%
- Samples:
s1 s2 label According to labeling theory, individuals are considered deviant once society has tagged them with that label.
Labeling theory posits that corporations become powerful when labeled as such by stakeholders.
0
Employers must classify workers correctly as either employees or independent contractors to comply with tax and labor laws.
Employers must classify workers correctly as either employees or independent contractors to comply with tax and labor laws.
1
Higher education institutions play a critical role in advancing research and innovation.
Advancement in research and innovation is significantly driven by the contributions of higher education institutions.
1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 2,419 evaluation samples
- Columns:
s1
,s2
, andlabel
- Approximate statistics based on the first 1000 samples:
s1 s2 label type string string int details - min: 11 tokens
- mean: 19.91 tokens
- max: 37 tokens
- min: 11 tokens
- mean: 20.46 tokens
- max: 42 tokens
- 0: ~49.70%
- 1: ~50.30%
- Samples:
s1 s2 label Acoustic tomography is an innovative geophysical technique used to image the Earth's interior.
Acoustic tomography is an innovative geophysical technique used to image the Earth's interior.
1
Urban areas frequently exhibit a different age distribution pattern compared to rural areas.
Urban areas frequently exhibit a different age distribution pattern compared to rural areas.
1
Radiocarbon dating is a critical tool for assessing the duration of battery life in modern electronic devices.
Radiocarbon dating is a critical tool for assessing the duration of battery life in modern electronic devices.
1
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 10warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | custom-dev_spearman_cosine | custom-test_spearman_cosine |
---|---|---|---|---|---|
0.3300 | 100 | 0.2961 | 0.1185 | 0.8063 | - |
0.6601 | 200 | 0.0772 | 0.0504 | 0.8461 | - |
0.9901 | 300 | 0.0502 | 0.0454 | 0.8486 | - |
1.3201 | 400 | 0.0376 | 0.0402 | 0.8481 | - |
1.6502 | 500 | 0.0344 | 0.0400 | 0.8501 | - |
1.9802 | 600 | 0.0329 | 0.0390 | 0.8518 | - |
2.3102 | 700 | 0.0185 | 0.0387 | 0.8496 | - |
2.6403 | 800 | 0.0164 | 0.0371 | 0.8492 | - |
2.9703 | 900 | 0.0179 | 0.0393 | 0.8428 | - |
3.3003 | 1000 | 0.0099 | 0.0389 | 0.8466 | - |
3.6304 | 1100 | 0.0092 | 0.0395 | 0.8480 | - |
3.9604 | 1200 | 0.0101 | 0.0368 | 0.8492 | - |
4.2904 | 1300 | 0.0067 | 0.0385 | 0.8474 | - |
4.6205 | 1400 | 0.0056 | 0.0393 | 0.8456 | - |
4.9505 | 1500 | 0.0068 | 0.0401 | 0.8466 | - |
5.2805 | 1600 | 0.0041 | 0.0410 | 0.8462 | - |
5.6106 | 1700 | 0.0043 | 0.0399 | 0.8469 | - |
5.9406 | 1800 | 0.0039 | 0.0406 | 0.8463 | - |
6.2706 | 1900 | 0.003 | 0.0400 | 0.8456 | - |
6.6007 | 2000 | 0.0026 | 0.0416 | 0.8438 | - |
6.9307 | 2100 | 0.0027 | 0.0420 | 0.8437 | - |
7.2607 | 2200 | 0.0028 | 0.0424 | 0.8449 | - |
7.5908 | 2300 | 0.0021 | 0.0422 | 0.8458 | - |
7.9208 | 2400 | 0.002 | 0.0414 | 0.8451 | - |
8.2508 | 2500 | 0.0015 | 0.0421 | 0.8451 | - |
8.5809 | 2600 | 0.0015 | 0.0427 | 0.8451 | - |
8.9109 | 2700 | 0.0016 | 0.0429 | 0.8444 | - |
9.2409 | 2800 | 0.0011 | 0.0432 | 0.8442 | - |
9.5710 | 2900 | 0.0014 | 0.0432 | 0.8444 | - |
9.9010 | 3000 | 0.0011 | 0.0432 | 0.8442 | - |
10.0 | 3030 | - | - | - | 0.8501 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for pierreinalco/custom-v1
Base model
distilbert/distilbert-base-uncasedEvaluation results
- Pearson Cosine on custom devself-reported0.912
- Spearman Cosine on custom devself-reported0.844
- Pearson Manhattan on custom devself-reported0.916
- Spearman Manhattan on custom devself-reported0.844
- Pearson Euclidean on custom devself-reported0.916
- Spearman Euclidean on custom devself-reported0.845
- Pearson Dot on custom devself-reported0.905
- Spearman Dot on custom devself-reported0.833
- Pearson Max on custom devself-reported0.916
- Spearman Max on custom devself-reported0.845