custom-v1 / README.md
pierreinalco's picture
Add new SentenceTransformer model.
24eb417 verified
metadata
language: []
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:10K<n<100K
  - loss:CosineSimilarityLoss
base_model: distilbert/distilbert-base-uncased
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: The long jump pit had to be raked after every few attempts.
    sentences:
      - The high jumper cleared the bar on his first attempt.
      - >-
        Chemists use quantum mechanics to predict electron behavior and
        molecular bonding.
      - >-
        Eczema frequently appears as inflamed, tender spots on several parts of
        the body.
  - source_sentence: Street art transforms empty rural barns into lively murals.
    sentences:
      - >-
        Traditional folk music plays a significant role in preserving a
        community's history.
      - >-
        [SYNTAX] The saxophone offers the high-pitched, thrilling elements in a
        jazz trio.
      - Atmospheric pressure decreases as you move higher above sea level.
  - source_sentence: Proteins are synthesized through the process of translation.
    sentences:
      - >-
        Molecular genetics studies the structure and function of genes at a
        molecular level.
      - >-
        The mathematics lecture is a compelling method for introducing integral
        equations.
      - >-
        The correlation between air pollution and increased mortality rates is
        well-documented.  
  - source_sentence: '[SYNTAX] A barometer is used to measure atmospheric pressure.'
    sentences:
      - >-
        [SYNTAX] Colonialism is a primary subject in several political science
        research papers.
      - >-
        [SYNTAX] Ordinary urban walls are turned into vibrant masterpieces by
        street art.
      - >-
        Email remains a significant device for academic and fictional
        correspondence.
  - source_sentence: Salinity gradients in oceans affect local wildlife habitats.
    sentences:
      - >-
        The distribution of wildlife in different habitats has fascinated
        ecologists for decades.
      - >-
        [SYNTAX] Bioenergy plants can convert agricultural waste into valuable
        electricity.
      - Proper management of irrigation schedules is crucial for crop health.
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on distilbert/distilbert-base-uncased
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: custom dev
          type: custom-dev
        metrics:
          - type: pearson_cosine
            value: 0.9117000984572255
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8442193394453843
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.9156511082976959
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8440889792296263
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.9159884478218315
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8445673615230997
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.9046139794819923
            name: Pearson Dot
          - type: spearman_dot
            value: 0.8327655787489855
            name: Spearman Dot
          - type: pearson_max
            value: 0.9159884478218315
            name: Pearson Max
          - type: spearman_max
            value: 0.8445673615230997
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: custom test
          type: custom-test
        metrics:
          - type: pearson_cosine
            value: 0.919801732989496
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8500534773438543
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.9282084953416339
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8493690342081703
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.9284184436823353
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.849759760833697
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.9141474471982576
            name: Pearson Dot
          - type: spearman_dot
            value: 0.8410969822964006
            name: Spearman Dot
          - type: pearson_max
            value: 0.9284184436823353
            name: Pearson Max
          - type: spearman_max
            value: 0.8500534773438543
            name: Spearman Max

SentenceTransformer based on distilbert/distilbert-base-uncased

This is a sentence-transformers model finetuned from distilbert/distilbert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: distilbert/distilbert-base-uncased
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Salinity gradients in oceans affect local wildlife habitats.',
    'The distribution of wildlife in different habitats has fascinated ecologists for decades.',
    '[SYNTAX] Bioenergy plants can convert agricultural waste into valuable electricity.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9117
spearman_cosine 0.8442
pearson_manhattan 0.9157
spearman_manhattan 0.8441
pearson_euclidean 0.916
spearman_euclidean 0.8446
pearson_dot 0.9046
spearman_dot 0.8328
pearson_max 0.916
spearman_max 0.8446

Semantic Similarity

Metric Value
pearson_cosine 0.9198
spearman_cosine 0.8501
pearson_manhattan 0.9282
spearman_manhattan 0.8494
pearson_euclidean 0.9284
spearman_euclidean 0.8498
pearson_dot 0.9141
spearman_dot 0.8411
pearson_max 0.9284
spearman_max 0.8501

Training Details

Training Dataset

Unnamed Dataset

  • Size: 19,352 training samples
  • Columns: s1, s2, and label
  • Approximate statistics based on the first 1000 samples:
    s1 s2 label
    type string string int
    details
    • min: 10 tokens
    • mean: 19.92 tokens
    • max: 42 tokens
    • min: 10 tokens
    • mean: 20.53 tokens
    • max: 42 tokens
    • 0: ~50.50%
    • 1: ~49.50%
  • Samples:
    s1 s2 label
    According to labeling theory, individuals are considered deviant once society has tagged them with that label. Labeling theory posits that corporations become powerful when labeled as such by stakeholders. 0
    Employers must classify workers correctly as either employees or independent contractors to comply with tax and labor laws. Employers must classify workers correctly as either employees or independent contractors to comply with tax and labor laws. 1
    Higher education institutions play a critical role in advancing research and innovation. Advancement in research and innovation is significantly driven by the contributions of higher education institutions. 1
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 2,419 evaluation samples
  • Columns: s1, s2, and label
  • Approximate statistics based on the first 1000 samples:
    s1 s2 label
    type string string int
    details
    • min: 11 tokens
    • mean: 19.91 tokens
    • max: 37 tokens
    • min: 11 tokens
    • mean: 20.46 tokens
    • max: 42 tokens
    • 0: ~49.70%
    • 1: ~50.30%
  • Samples:
    s1 s2 label
    Acoustic tomography is an innovative geophysical technique used to image the Earth's interior. Acoustic tomography is an innovative geophysical technique used to image the Earth's interior. 1
    Urban areas frequently exhibit a different age distribution pattern compared to rural areas. Urban areas frequently exhibit a different age distribution pattern compared to rural areas. 1
    Radiocarbon dating is a critical tool for assessing the duration of battery life in modern electronic devices. Radiocarbon dating is a critical tool for assessing the duration of battery life in modern electronic devices. 1
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 10
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss custom-dev_spearman_cosine custom-test_spearman_cosine
0.3300 100 0.2961 0.1185 0.8063 -
0.6601 200 0.0772 0.0504 0.8461 -
0.9901 300 0.0502 0.0454 0.8486 -
1.3201 400 0.0376 0.0402 0.8481 -
1.6502 500 0.0344 0.0400 0.8501 -
1.9802 600 0.0329 0.0390 0.8518 -
2.3102 700 0.0185 0.0387 0.8496 -
2.6403 800 0.0164 0.0371 0.8492 -
2.9703 900 0.0179 0.0393 0.8428 -
3.3003 1000 0.0099 0.0389 0.8466 -
3.6304 1100 0.0092 0.0395 0.8480 -
3.9604 1200 0.0101 0.0368 0.8492 -
4.2904 1300 0.0067 0.0385 0.8474 -
4.6205 1400 0.0056 0.0393 0.8456 -
4.9505 1500 0.0068 0.0401 0.8466 -
5.2805 1600 0.0041 0.0410 0.8462 -
5.6106 1700 0.0043 0.0399 0.8469 -
5.9406 1800 0.0039 0.0406 0.8463 -
6.2706 1900 0.003 0.0400 0.8456 -
6.6007 2000 0.0026 0.0416 0.8438 -
6.9307 2100 0.0027 0.0420 0.8437 -
7.2607 2200 0.0028 0.0424 0.8449 -
7.5908 2300 0.0021 0.0422 0.8458 -
7.9208 2400 0.002 0.0414 0.8451 -
8.2508 2500 0.0015 0.0421 0.8451 -
8.5809 2600 0.0015 0.0427 0.8451 -
8.9109 2700 0.0016 0.0429 0.8444 -
9.2409 2800 0.0011 0.0432 0.8442 -
9.5710 2900 0.0014 0.0432 0.8444 -
9.9010 3000 0.0011 0.0432 0.8442 -
10.0 3030 - - - 0.8501

Framework Versions

  • Python: 3.11.9
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.2
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}