distil_whisper_en / README.md
pravin96's picture
Model save
b45a6ed verified
|
raw
history blame
1.85 kB
metadata
library_name: transformers
license: mit
base_model: distil-whisper/distil-small.en
tags:
  - generated_from_trainer
datasets:
  - generator
metrics:
  - wer
model-index:
  - name: distil_whisper_en
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: generator
          type: generator
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.8298755186721992

distil_whisper_en

This model is a fine-tuned version of distil-whisper/distil-small.en on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Wer: 0.8299

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0 19.031 500 0.0000 0.8299

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1