metadata
library_name: transformers
license: mit
base_model: distil-whisper/distil-small.en
tags:
- generated_from_trainer
datasets:
- generator
metrics:
- wer
model-index:
- name: distil_whisper_en
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: generator
type: generator
config: default
split: train
args: default
metrics:
- name: Wer
type: wer
value: 0.8298755186721992
distil_whisper_en
This model is a fine-tuned version of distil-whisper/distil-small.en on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.0000
- Wer: 0.8299
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0 | 19.031 | 500 | 0.0000 | 0.8299 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1