gemma-2-9b-it-SimPO / README.md
princeton-nlp's picture
Update README.md
ebdb01f verified
|
raw
history blame
4.31 kB
---
library_name: transformers
tags: []
---
# gemma-2-9b-it-SimPO Model Card
SimPO (Simple Preference Optimization) is an offline preference optimization algorithm designed to enhance the training of large language models (LLMs) with preference optimization datasets. SimPO aligns the reward function with the generation likelihood, eliminating the need for a reference model and incorporating a target reward margin to boost performance. Please refer to our [preprint](https://arxiv.org/pdf/2405.14734) and [github repo](https://github.com/princeton-nlp/SimPO) for more details.
## Model Details
### Model Description
We fine-tuned [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) with the SimPO objective.
- **Developed by:** Yu Meng, Mengzhou Xia, Danqi Chen
- **Model type:** Causal Language Model
- **License:** gemma
- **Finetuned from model:** [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/princeton-nlp/SimPO
- **Paper:** https://arxiv.org/pdf/2405.14734
- **Demo:** Soon to be alive
## How to Get Started with the Model
```
import torch
from transformers import pipeline
model_id = "princeton-nlp/gemma-2-9b-it-SimPO"
generator = pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device="cuda",
)
outputs = generator([{"role": "user", "content": "What's the difference between llamas and alpacas?"}], do_sample=False, max_new_tokens=200)
print(outputs[0]['generated_text'])
```
## Training Details
### Training Data
We use
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times
Fine-tuning the [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on [princeton-nlp/gemma2-ultrafeedback-armorm](https://huggingface.co/datasets/princeton-nlp/gemma2-ultrafeedback-armorm) takes around 100 mins to finish on 8xH100 GPUs.
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Technical Specifications
### Model Architecture and Objective
The model architecture is based on [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it). We use the SimPO training objective proposed in our [preprint](https://arxiv.org/pdf/2405.14734).
#### Hardware
We used 8xH100 GPUs for model training.
#### Software
Training was done using the [alignment-handbook](https://github.com/huggingface/alignment-handbook) library.
## Citation
gemma model:
```
@article{gemma_2024,
title={Gemma},
url={https://www.kaggle.com/m/3301},
DOI={10.34740/KAGGLE/M/3301},
publisher={Kaggle},
author={Gemma Team},
year={2024}
}
```
SimPO paper:
```
@article{meng2024simpo,
title={{SimPO}: Simple preference optimization with a reference-free reward},
author={Meng, Yu and Xia, Mengzhou and Chen, Danqi},
journal={arXiv preprint arXiv:2405.14734},
year={2024}
}
```
UltraFeedback paper:
```
@article{cui2023ultrafeedback,
title={{UltraFeedback}: Boosting language models with high-quality feedback},
author={Cui, Ganqu and Yuan, Lifan and Ding, Ning and Yao, Guanming and Zhu, Wei and Ni, Yuan and Xie, Guotong and Liu, Zhiyuan and Sun, Maosong},
journal={arXiv preprint arXiv:2310.01377},
year={2023}
}
```
ArmoRM paper:
```
@article{wang2024interpretable,
title={Interpretable Preferences via Multi-Objective Reward Modeling and Mixture-of-Experts},
author={Wang, Haoxiang and Xiong, Wei and Xie, Tengyang and Zhao, Han and Zhang, Tong},
journal={arXiv preprint arXiv:2406.12845},
year={2024}
}
```