|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: pszemraj/tFINE-base-300m |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: tFINE-base-300m-samsum |
|
results: |
|
- task: |
|
name: Summarization |
|
type: summarization |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: None |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 42.3629 |
|
library_name: transformers |
|
pipeline_tag: summarization |
|
--- |
|
|
|
# tFINE-base-300m-samsum |
|
|
|
An example fine-tune of [pszemraj/tFINE-base-300m](https://hf.co/pszemraj/tFINE-base-300m) for summarization using the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9820 |
|
- Rouge1: 42.3629 |
|
- Rouge2: 18.4285 |
|
- Rougel: 34.6339 |
|
- Rougelsum: 38.7792 |
|
- Gen Len: 27.8033 |
|
|
|
> [!NOTE] |
|
> The base model was pre-trained with CTX 1024 and fine-tuned on samsum with 1024 CTX inputs. |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 17868 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 4.0 |
|
|
|
### Training results |
|
|
|
> keep epoch 3 checkpt as final |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.9528 | 0.9989 | 115 | 1.9189 | 40.093 | 18.2018 | 33.9749 | 36.9071 | 29.3333 | |
|
| 1.5346 | 1.9978 | 230 | 1.8827 | 41.4676 | 18.3467 | 34.1909 | 38.2131 | 27.6633 | |
|
| 1.1696 | 2.9967 | 345 | 1.9820 | 42.3629 | 18.4285 | 34.6339 | 38.7792 | 27.8033 | |
|
| 0.9359 | 3.9957 | 460 | 2.1588 | 41.2237 | 17.8161 | 33.7101 | 37.9569 | 30.18 | |
|
|
|
|