metadata
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: null
flux-lora-littletinies
This is a LoRA derived from FLUX.1-dev/.
The main validation prompt used during training was:
ethnographic photography of teddy bear at a picnic
Validation settings
- CFG:
7.5
- CFG Rescale:
0.7
- Steps:
50
- Sampler:
None
- Seed:
42
- Resolution:
1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 23
- Training steps: 1800
- Learning rate: 0.0001
- Effective batch size: 16
- Micro-batch size: 8
- Gradient accumulation steps: 2
- Number of GPUs: 1
- Prediction type: epsilon
- Rescaled betas zero SNR: False
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Xformers: Enabled
- LoRA Rank: 64
- LoRA Alpha: 16
- LoRA Dropout: 0.1
- LoRA initialisation style: default
Datasets
little-tinies
- Repeats: 18
- Total number of images: 78
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
Inference
import torch
from diffusers import DiffusionPipeline
model_id = '/black-forest-labs/FLUX.1-dev'
adapter_id = '/pzc163/flux-lora-littletinies'
pipeline = DiffusionPipeline.from_pretrained(model_id)\pipeline.load_adapter(adapter_id)
prompt = "ethnographic photography of teddy bear at a picnic"
negative_prompt = "blurry, cropped, ugly"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
negative_prompt='blurry, cropped, ugly',
num_inference_steps=50,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1152,
height=768,
guidance_scale=7.5,
guidance_rescale=0.7,
).images[0]
image.save("output.png", format="PNG")
inference: true widget:
- text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./image0.png
- text: 'ethnographic photography of teddy bear at a picnic' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./image1.png
- text: 'a robot walking on the street,surrounded by a group of girls' parameters: negative_prompt: 'blurry, cropped, ugly'