|
--- |
|
tags: |
|
- text-to-image |
|
- flux |
|
- lora |
|
- diffusers |
|
- template:sd-lora |
|
base_model: black-forest-labs/FLUX.1-dev |
|
instance_prompt: null |
|
--- |
|
|
|
|
|
# flux-lora-littletinies |
|
|
|
This is a LoRA derived from [FLUX.1-dev/](https://huggingface.co/black-forest-labs/FLUX.1-dev). |
|
|
|
|
|
|
|
The main validation prompt used during training was: |
|
|
|
``` |
|
ethnographic photography of teddy bear at a picnic |
|
``` |
|
|
|
## Validation settings |
|
- CFG: `7.5` |
|
- CFG Rescale: `0.7` |
|
- Steps: `50` |
|
- Sampler: `None` |
|
- Seed: `42` |
|
- Resolution: `1024` |
|
|
|
Note: The validation settings are not necessarily the same as the [training settings](#training-settings). |
|
|
|
You can find some example images in the following gallery: |
|
|
|
|
|
<Gallery /> |
|
|
|
The text encoder **was not** trained. |
|
You may reuse the base model text encoder for inference. |
|
|
|
|
|
## Training settings |
|
|
|
- Training epochs: 23 |
|
- Training steps: 1800 |
|
- Learning rate: 0.0001 |
|
- Effective batch size: 16 |
|
- Micro-batch size: 8 |
|
- Gradient accumulation steps: 2 |
|
- Number of GPUs: 1 |
|
- Prediction type: epsilon |
|
- Rescaled betas zero SNR: False |
|
- Optimizer: AdamW, stochastic bf16 |
|
- Precision: Pure BF16 |
|
- Xformers: Enabled |
|
- LoRA Rank: 64 |
|
- LoRA Alpha: 16 |
|
- LoRA Dropout: 0.1 |
|
- LoRA initialisation style: default |
|
|
|
|
|
## Datasets |
|
|
|
### little-tinies |
|
- Repeats: 18 |
|
- Total number of images: 78 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 1.0 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
|
|
|
|
## Inference |
|
|
|
|
|
```python |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
|
|
model_id = '/black-forest-labs/FLUX.1-dev' |
|
adapter_id = '/pzc163/flux-lora-littletinies' |
|
pipeline = DiffusionPipeline.from_pretrained(model_id)\pipeline.load_adapter(adapter_id) |
|
|
|
prompt = "ethnographic photography of teddy bear at a picnic" |
|
negative_prompt = "blurry, cropped, ugly" |
|
|
|
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') |
|
image = pipeline( |
|
prompt=prompt, |
|
negative_prompt='blurry, cropped, ugly', |
|
num_inference_steps=50, |
|
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), |
|
width=1152, |
|
height=768, |
|
guidance_scale=7.5, |
|
guidance_rescale=0.7, |
|
).images[0] |
|
image.save("output.png", format="PNG") |
|
``` |
|
|
|
inference: true |
|
widget: |
|
- text: 'unconditional (blank prompt)' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./image0.png |
|
- text: 'ethnographic photography of teddy bear at a picnic' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./image1.png |
|
- text: 'a robot walking on the street,surrounded by a group of girls' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |