|
--- |
|
license: mit |
|
base_model: roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: roberta-finetuned-gesture-prediction-21-classes |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-finetuned-gesture-prediction-21-classes |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0350 |
|
- Precision: 0.8324 |
|
- Recall: 0.8324 |
|
- F1: 0.8324 |
|
- Accuracy: 0.8230 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4.9033776462709114e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 1.8808 | 1.0 | 104 | 1.1258 | 0.7513 | 0.7513 | 0.7513 | 0.7258 | |
|
| 0.8843 | 2.0 | 208 | 0.9338 | 0.7765 | 0.7765 | 0.7765 | 0.7578 | |
|
| 0.5881 | 3.0 | 312 | 0.8124 | 0.8173 | 0.8173 | 0.8173 | 0.8011 | |
|
| 0.4017 | 4.0 | 416 | 0.8831 | 0.7973 | 0.7973 | 0.7973 | 0.7848 | |
|
| 0.2652 | 5.0 | 520 | 0.9254 | 0.8300 | 0.8300 | 0.8300 | 0.8172 | |
|
| 0.1776 | 6.0 | 624 | 0.9221 | 0.8310 | 0.8310 | 0.8310 | 0.8180 | |
|
| 0.1234 | 7.0 | 728 | 1.0063 | 0.8211 | 0.8211 | 0.8211 | 0.8112 | |
|
| 0.0829 | 8.0 | 832 | 1.0132 | 0.8298 | 0.8298 | 0.8298 | 0.8201 | |
|
| 0.0552 | 9.0 | 936 | 1.0408 | 0.8290 | 0.8290 | 0.8290 | 0.8189 | |
|
| 0.0409 | 10.0 | 1040 | 1.0350 | 0.8324 | 0.8324 | 0.8324 | 0.8230 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|