English
File size: 7,090 Bytes
029d226
 
 
 
 
 
 
d838dbe
 
 
029d226
 
 
 
d838dbe
 
 
 
029d226
 
 
 
 
 
d838dbe
 
 
 
 
029d226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d838dbe
029d226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d838dbe
 
 
029d226
 
 
 
 
 
 
 
d838dbe
 
 
029d226
 
 
 
 
 
 
 
 
 
 
d838dbe
 
 
029d226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d838dbe
029d226
 
 
 
 
d838dbe
 
029d226
b534628
029d226
 
 
 
 
 
 
d838dbe
029d226
d838dbe
029d226
 
 
 
 
d838dbe
029d226
 
 
d838dbe
029d226
d838dbe
029d226
 
 
d838dbe
 
 
 
 
029d226
 
 
 
d838dbe
 
 
 
 
 
 
 
 
 
 
 
 
029d226
 
 
 
 
 
 
 
d838dbe
029d226
d838dbe
 
 
029d226
 
 
 
 
d838dbe
 
 
 
 
029d226
 
 
 
d838dbe
029d226
 
 
 
d838dbe
029d226
 
 
d838dbe
 
 
 
 
 
 
 
 
 
 
029d226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d838dbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import torch
import torch.nn as nn
from PIL import Image
from transformers import (
    AutoTokenizer,
    BitsAndBytesConfig,
    LlamaForCausalLM,
    SiglipImageProcessor,
    SiglipVisionModel,
)
from transformers import TextStreamer


def tokenizer_image_token(
    prompt, tokenizer, image_token_index=-200, return_tensors=None
):
    prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]

    def insert_separator(X, sep):
        return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]

    input_ids = []
    offset = 0
    if (
        len(prompt_chunks) > 0
        and len(prompt_chunks[0]) > 0
        and prompt_chunks[0][0] == tokenizer.bos_token_id
    ):
        offset = 1
        input_ids.append(prompt_chunks[0][0])

    for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
        input_ids.extend(x[offset:])

    return torch.tensor(input_ids, dtype=torch.long)


def process_tensors(input_ids, image_features, embedding_layer):
    # Find the index of -200 in input_ids
    split_index = (input_ids == -200).nonzero(as_tuple=True)[1][0]

    # Split the input_ids at the index found, excluding -200
    input_ids_1 = input_ids[:, :split_index]
    input_ids_2 = input_ids[:, split_index + 1 :]

    # Convert input_ids to embeddings
    embeddings_1 = embedding_layer(input_ids_1)
    embeddings_2 = embedding_layer(input_ids_2)

    device = image_features.device
    token_embeddings_part1 = embeddings_1.to(device)
    token_embeddings_part2 = embeddings_2.to(device)

    # Concatenate the token embeddings and image features
    concatenated_embeddings = torch.cat(
        [token_embeddings_part1, image_features, token_embeddings_part2], dim=1
    )

    # Create the corrected attention mask
    attention_mask = torch.ones(
        concatenated_embeddings.shape[:2], dtype=torch.long, device=device
    )
    return concatenated_embeddings, attention_mask


def initialize_models():
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16
    )

    tokenizer = AutoTokenizer.from_pretrained(
        "unsloth/llama-3-8b-Instruct", use_fast=True
    )
    model = LlamaForCausalLM.from_pretrained(
        "unsloth/llama-3-8b-Instruct",
        torch_dtype=torch.float16,
        device_map="auto",
        quantization_config=bnb_config,
    )

    for param in model.base_model.parameters():
        param.requires_grad = False

    model_name = "google/siglip-so400m-patch14-384"
    vision_model = SiglipVisionModel.from_pretrained(
        model_name, torch_dtype=torch.float16
    )
    processor = SiglipImageProcessor.from_pretrained(model_name)

    vision_model = vision_model.to("cuda")

    return tokenizer, model, vision_model, processor


class ProjectionModule(nn.Module):
    def __init__(self, mm_hidden_size, hidden_size):
        super(ProjectionModule, self).__init__()

        # Directly set up the sequential model
        self.model = nn.Sequential(
            nn.Linear(mm_hidden_size, hidden_size),
            nn.GELU(),
            nn.Linear(hidden_size, hidden_size),
        )

    def forward(self, x):
        return self.model(x)


def load_projection_module(mm_hidden_size=1152, hidden_size=4096, device="cuda"):
    projection_module = ProjectionModule(mm_hidden_size, hidden_size)
    checkpoint = torch.load("./mm_projector.bin")
    checkpoint = {k.replace("mm_projector.", ""): v for k, v in checkpoint.items()}
    projection_module.load_state_dict(checkpoint)
    projection_module = projection_module.to(device).half()
    return projection_module


def answer_question(
    image_path, tokenizer, model, vision_model, processor, projection_module
):
    image = Image.open(image_path).convert("RGB")

    tokenizer.bos_token_id = None
    tokenizer.eos_token = "<|eot_id|>"

    try:
        inp = input("user: ")
    except EOFError:
        inp = ""
    if not inp:
        print("exit...")

    question = "<image>" + inp

    prompt = f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{question}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"

    input_ids = (
        tokenizer_image_token(prompt, tokenizer, -200, return_tensors="pt")
        .unsqueeze(0)
        .to(model.device)
    )

    streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    with torch.inference_mode():
        image_inputs = processor(
            images=[image],
            return_tensors="pt",
            do_resize=True,
            size={"height": 384, "width": 384},
        ).to("cuda")

        image_inputs = image_inputs["pixel_values"].squeeze(0)

        image_forward_outs = vision_model(
            image_inputs.to(device="cuda", dtype=torch.float16).unsqueeze(0),
            output_hidden_states=True,
        )

        image_features = image_forward_outs.hidden_states[-2]

        image_features2 = image_features[:, 1:]

        projected_embeddings = projection_module(image_features2).to("cuda")

        embedding_layer = model.get_input_embeddings()
        # text_embeddings = embedding_layer(input_ids)

        new_embeds, attn_mask = process_tensors(
            input_ids, projected_embeddings, embedding_layer
        )
        device = model.device
        attn_mask = attn_mask.to(device)
        new_embeds = new_embeds.to(device)

        model_kwargs = {
            "do_sample": True,
            "temperature": 0.2,
            "max_new_tokens": 2000,
            "use_cache": True,
            "streamer": streamer,
        }

        while True:
            generated_ids = model.generate(
                inputs_embeds=new_embeds, attention_mask=attn_mask, **model_kwargs
            )[0]

            generated_text = tokenizer.decode(generated_ids, skip_special_tokens=False)
            try:
                inp = input("user: ")
            except EOFError:
                inp = ""
            if not inp:
                print("exit...")

            new_text = (
                generated_text
                + "<|start_header_id|>user<|end_header_id|>\n\n"
                + inp
                + "<|start_header_id|>assistant<|end_header_id|>\n\n"
            )
            new_input_ids = tokenizer(new_text, return_tensors="pt").input_ids.to(
                device
            )
            new_embeddings = embedding_layer(new_input_ids)

            new_embeds = torch.cat([new_embeds, new_embeddings], dim=1)
            attn_mask = torch.ones(new_embeds.shape[:2], device=device)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Answer questions based on an image")
    parser.add_argument("-i", "--image", required=True, help="Path to the image file")
    args = parser.parse_args()

    tokenizer, model, vision_model, processor = initialize_models()
    projection_module = load_projection_module()

    answer_question(
        args.image,
        tokenizer,
        model,
        vision_model,
        processor,
        projection_module,
    )