library_name: pytorch
license: apache-2.0
pipeline_tag: object-detection
tags:
- real_time
- android
MediaPipe-Hand-Detection: Optimized for Mobile Deployment
Real-time hand detection optimized for mobile and edge
The MediaPipe Hand Landmark Detector is a machine learning pipeline that predicts bounding boxes and pose skeletons of hands in an image.
This model is an implementation of MediaPipe-Hand-Detection found here.
This repository provides scripts to run MediaPipe-Hand-Detection on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Object detection
- Model Stats:
- Input resolution: 256x256
- Number of parameters (MediaPipeHandDetector): 1.76M
- Model size (MediaPipeHandDetector): 6.76 MB
- Number of parameters (MediaPipeHandLandmarkDetector): 2.01M
- Model size (MediaPipeHandLandmarkDetector): 7.71 MB
Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
MediaPipeHandDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.722 ms | 0 - 22 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.182 ms | 0 - 6 MB | FP16 | NPU | MediaPipe-Hand-Detection.onnx |
MediaPipeHandDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.518 ms | 0 - 19 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.859 ms | 0 - 70 MB | FP16 | NPU | MediaPipe-Hand-Detection.onnx |
MediaPipeHandDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.523 ms | 0 - 16 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.728 ms | 0 - 36 MB | FP16 | NPU | MediaPipe-Hand-Detection.onnx |
MediaPipeHandDetector | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.713 ms | 0 - 75 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandDetector | SA7255P ADP | SA7255P | TFLITE | 24.782 ms | 0 - 17 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.716 ms | 0 - 22 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandDetector | SA8295P ADP | SA8295P | TFLITE | 1.754 ms | 0 - 11 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.723 ms | 0 - 22 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandDetector | SA8775P ADP | SA8775P | TFLITE | 1.526 ms | 0 - 16 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.292 ms | 0 - 19 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.19 ms | 4 - 4 MB | FP16 | NPU | MediaPipe-Hand-Detection.onnx |
MediaPipeHandLandmarkDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.019 ms | 0 - 36 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandLandmarkDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.544 ms | 0 - 8 MB | FP16 | NPU | MediaPipe-Hand-Detection.onnx |
MediaPipeHandLandmarkDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.731 ms | 0 - 18 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandLandmarkDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 1.135 ms | 0 - 69 MB | FP16 | NPU | MediaPipe-Hand-Detection.onnx |
MediaPipeHandLandmarkDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.698 ms | 0 - 17 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandLandmarkDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.066 ms | 0 - 40 MB | FP16 | NPU | MediaPipe-Hand-Detection.onnx |
MediaPipeHandLandmarkDetector | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.001 ms | 0 - 6 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandLandmarkDetector | SA7255P ADP | SA7255P | TFLITE | 35.495 ms | 0 - 16 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandLandmarkDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.018 ms | 0 - 47 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandLandmarkDetector | SA8295P ADP | SA8295P | TFLITE | 2.271 ms | 0 - 12 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandLandmarkDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.023 ms | 0 - 229 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandLandmarkDetector | SA8775P ADP | SA8775P | TFLITE | 2.213 ms | 0 - 17 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandLandmarkDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.795 ms | 0 - 16 MB | FP16 | NPU | MediaPipe-Hand-Detection.tflite |
MediaPipeHandLandmarkDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.649 ms | 6 - 6 MB | FP16 | NPU | MediaPipe-Hand-Detection.onnx |
Installation
This model can be installed as a Python package via pip.
pip install qai-hub-models
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.mediapipe_hand.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.mediapipe_hand.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.mediapipe_hand.export
Profiling Results
------------------------------------------------------------
MediaPipeHandDetector
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 0.7
Estimated peak memory usage (MB): [0, 22]
Total # Ops : 149
Compute Unit(s) : NPU (149 ops)
------------------------------------------------------------
MediaPipeHandLandmarkDetector
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 1.0
Estimated peak memory usage (MB): [0, 36]
Total # Ops : 158
Compute Unit(s) : NPU (158 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.mediapipe_hand import Model
# Load the model
model = Model.from_pretrained()
hand_detector_model = model.hand_detector
hand_landmark_detector_model = model.hand_landmark_detector
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
hand_detector_input_shape = hand_detector_model.get_input_spec()
hand_detector_sample_inputs = hand_detector_model.sample_inputs()
traced_hand_detector_model = torch.jit.trace(hand_detector_model, [torch.tensor(data[0]) for _, data in hand_detector_sample_inputs.items()])
# Compile model on a specific device
hand_detector_compile_job = hub.submit_compile_job(
model=traced_hand_detector_model ,
device=device,
input_specs=hand_detector_model.get_input_spec(),
)
# Get target model to run on-device
hand_detector_target_model = hand_detector_compile_job.get_target_model()
# Trace model
hand_landmark_detector_input_shape = hand_landmark_detector_model.get_input_spec()
hand_landmark_detector_sample_inputs = hand_landmark_detector_model.sample_inputs()
traced_hand_landmark_detector_model = torch.jit.trace(hand_landmark_detector_model, [torch.tensor(data[0]) for _, data in hand_landmark_detector_sample_inputs.items()])
# Compile model on a specific device
hand_landmark_detector_compile_job = hub.submit_compile_job(
model=traced_hand_landmark_detector_model ,
device=device,
input_specs=hand_landmark_detector_model.get_input_spec(),
)
# Get target model to run on-device
hand_landmark_detector_target_model = hand_landmark_detector_compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
hand_detector_profile_job = hub.submit_profile_job(
model=hand_detector_target_model,
device=device,
)
hand_landmark_detector_profile_job = hub.submit_profile_job(
model=hand_landmark_detector_target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
hand_detector_input_data = hand_detector_model.sample_inputs()
hand_detector_inference_job = hub.submit_inference_job(
model=hand_detector_target_model,
device=device,
inputs=hand_detector_input_data,
)
hand_detector_inference_job.download_output_data()
hand_landmark_detector_input_data = hand_landmark_detector_model.sample_inputs()
hand_landmark_detector_inference_job = hub.submit_inference_job(
model=hand_landmark_detector_target_model,
device=device,
inputs=hand_landmark_detector_input_data,
)
hand_landmark_detector_inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on MediaPipe-Hand-Detection's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of MediaPipe-Hand-Detection can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.