metadata
license: apache-2.0
language:
- en
library_name: diffusers
Gallery 路 GitHub 路 Blog 路 Paper 路 Discord
Gallery
For more demos and corresponding prompts, see the Allegro Gallery.
Key Feature
- High-Quality Output: Generate detailed 6-second videos at 15 FPS with 720x1280 resolution, which can be interpolated to 30 FPS with EMA-VFI.
- Small and Efficient: Features a 175M parameter VAE and a 2.8B parameter DiT model. Supports multiple precisions (FP32, BF16, FP16) and uses 9.3 GB of GPU memory in BF16 mode with CPU offloading.
- Extensive Context Length: Handles up to 79.2k tokens, providing rich and comprehensive text-to-video generation capabilities.
- Versatile Content Creation: Capable of generating a wide range of content, from close-ups of humans and animals to diverse dynamic scenes.
Model info
Model | Allegro |
---|---|
Description | Text-to-Video Generation Model |
Download | <HF link - TBD> |
Parameter | VAE: 175M |
DiT: 2.8B | |
Inference Precision | VAE: FP32/TF32/BF16/FP16 (best in FP32/TF32) |
DiT/T5: BF16/FP32/TF32 | |
Context Length | 79.2k |
Resolution | 720 x 1280 |
Frames | 88 |
Video Length | 6 seconds @ 15 fps |
Single GPU Memory Usage | 9.3G BF16 (with cpu_offload) |
Quick start
You can quickly get started with Allegro using the Hugging Face Diffusers library. For more tutorials, see Allegro GitHub (link-tbd).
- Install necessary requirements. Please refer to requirements.txt on Allegro GitHub.
- Perform inference on a single GPU.
from diffusers import DiffusionPipeline
import torch
allegro_pipeline = DiffusionPipeline.from_pretrained(
"rhymes-ai/Allegro", trust_remote_code=True, torch_dtype=torch.bfloat16
).to("cuda")
allegro_pipeline.vae = allegro_pipeline.vae.to(torch.float32)
prompt = "a video of an astronaut riding a horse on mars"
positive_prompt = """
(masterpiece), (best quality), (ultra-detailed), (unwatermarked),
{}
emotional, harmonious, vignette, 4k epic detailed, shot on kodak, 35mm photo,
sharp focus, high budget, cinemascope, moody, epic, gorgeous
"""
negative_prompt = """
nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality,
low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry.
"""
num_sampling_steps, guidance_scale, seed = 100, 7.5, 42
user_prompt = positive_prompt.format(args.user_prompt.lower().strip())
out_video = allegro_pipeline(
user_prompt,
negative_prompt=negative_prompt,
num_frames=88,
height=720,
width=1280,
num_inference_steps=num_sampling_steps,
guidance_scale=guidance_scale,
max_sequence_length=512,
generator = torch.Generator(device="cuda:0").manual_seed(seed)
).video[0]
imageio.mimwrite("test_video.mp4", out_video, fps=15, quality=8)
Tip:
- It is highly recommended to use a video frame interpolation model (such as EMA-VFI) to enhance the result to 30 FPS.
- For more tutorials, see Allegro GitHub.
License
This repo is released under the Apache 2.0 License.