metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: results
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.575
results
This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.3098
- Accuracy: 0.575
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 10 | 1.8622 | 0.2875 |
1.7517 | 2.0 | 20 | 1.6548 | 0.45 |
1.7517 | 3.0 | 30 | 1.4987 | 0.4688 |
0.8128 | 4.0 | 40 | 1.3997 | 0.5125 |
0.8128 | 5.0 | 50 | 1.3707 | 0.5125 |
0.2863 | 6.0 | 60 | 1.3209 | 0.525 |
0.2863 | 7.0 | 70 | 1.3131 | 0.55 |
0.0776 | 8.0 | 80 | 1.2887 | 0.5563 |
0.0776 | 9.0 | 90 | 1.2996 | 0.5687 |
0.0267 | 10.0 | 100 | 1.3032 | 0.5563 |
0.0267 | 11.0 | 110 | 1.3003 | 0.5625 |
0.0156 | 12.0 | 120 | 1.3069 | 0.5625 |
0.0156 | 13.0 | 130 | 1.3039 | 0.5687 |
0.0117 | 14.0 | 140 | 1.3037 | 0.5687 |
0.0117 | 15.0 | 150 | 1.3059 | 0.5687 |
0.0098 | 16.0 | 160 | 1.3098 | 0.575 |
0.0098 | 17.0 | 170 | 1.3095 | 0.5625 |
0.0088 | 18.0 | 180 | 1.3107 | 0.5625 |
0.0088 | 19.0 | 190 | 1.3112 | 0.5687 |
0.0083 | 20.0 | 200 | 1.3112 | 0.5687 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1