results / README.md
riyadifirman's picture
End of training
1de49cb verified
|
raw
history blame
2.87 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: results
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.575

results

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3098
  • Accuracy: 0.575

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 10 1.8622 0.2875
1.7517 2.0 20 1.6548 0.45
1.7517 3.0 30 1.4987 0.4688
0.8128 4.0 40 1.3997 0.5125
0.8128 5.0 50 1.3707 0.5125
0.2863 6.0 60 1.3209 0.525
0.2863 7.0 70 1.3131 0.55
0.0776 8.0 80 1.2887 0.5563
0.0776 9.0 90 1.2996 0.5687
0.0267 10.0 100 1.3032 0.5563
0.0267 11.0 110 1.3003 0.5625
0.0156 12.0 120 1.3069 0.5625
0.0156 13.0 130 1.3039 0.5687
0.0117 14.0 140 1.3037 0.5687
0.0117 15.0 150 1.3059 0.5687
0.0098 16.0 160 1.3098 0.575
0.0098 17.0 170 1.3095 0.5625
0.0088 18.0 180 1.3107 0.5625
0.0088 19.0 190 1.3112 0.5687
0.0083 20.0 200 1.3112 0.5687

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1