roequitz's picture
End of training
1b76bc2 verified
metadata
library_name: transformers
license: apache-2.0
base_model: sshleifer/distilbart-xsum-12-6
tags:
  - generated_from_trainer
model-index:
  - name: bart-abs-2409-1947-lr-3e-05-bs-2-maxep-10
    results: []

bart-abs-2409-1947-lr-3e-05-bs-2-maxep-10

This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6542
  • Rouge/rouge1: 0.4733
  • Rouge/rouge2: 0.2228
  • Rouge/rougel: 0.409
  • Rouge/rougelsum: 0.4103
  • Bertscore/bertscore-precision: 0.8957
  • Bertscore/bertscore-recall: 0.8945
  • Bertscore/bertscore-f1: 0.8949
  • Meteor: 0.4257
  • Gen Len: 38.0727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
2.3299 1.0 434 2.1997 0.4484 0.2127 0.3842 0.3856 0.8939 0.8904 0.892 0.4107 38.4273
1.6174 2.0 868 2.0581 0.4617 0.2158 0.3919 0.393 0.8972 0.8907 0.8938 0.4049 36.0545
1.1854 3.0 1302 2.1888 0.4631 0.2153 0.3893 0.3914 0.9 0.891 0.8953 0.4044 35.8273
0.8568 4.0 1736 2.3776 0.4518 0.201 0.3822 0.3839 0.8973 0.8895 0.8932 0.3907 34.7636
0.6056 5.0 2170 2.6468 0.4731 0.2207 0.4031 0.4036 0.8974 0.8946 0.8959 0.4173 37.5818
0.4235 6.0 2604 2.9226 0.4816 0.2258 0.4055 0.4064 0.8989 0.8955 0.897 0.4317 36.8909
0.2995 7.0 3038 3.1938 0.4541 0.1989 0.3839 0.3843 0.8941 0.8916 0.8927 0.4071 37.0091
0.2079 8.0 3472 3.4178 0.4684 0.2094 0.3926 0.3931 0.8941 0.8942 0.894 0.4177 39.4545
0.1527 9.0 3906 3.5347 0.4716 0.2151 0.3989 0.4009 0.8937 0.8942 0.8938 0.4277 39.5909
0.1203 10.0 4340 3.6542 0.4733 0.2228 0.409 0.4103 0.8957 0.8945 0.8949 0.4257 38.0727

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1