roequitz's picture
End of training
aa2cb5c verified
metadata
license: apache-2.0
base_model: sshleifer/distilbart-xsum-12-6
tags:
  - generated_from_trainer
model-index:
  - name: trained-distilbart-abs-0807
    results: []

trained-distilbart-abs-0807

This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4184
  • Rouge/rouge1: 0.0185
  • Rouge/rouge2: 0.0088
  • Rouge/rougel: 0.0152
  • Rouge/rougelsum: 0.016
  • Bertscore/bertscore-precision: 0.0404
  • Bertscore/bertscore-recall: 0.04
  • Bertscore/bertscore-f1: 0.0402
  • Meteor: 0.0163
  • Gen Len: 80.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
2.105 1.0 220 2.0884 0.4545 0.2049 0.3881 0.3905 0.8969 0.88 0.8882 0.3923 80.0
1.8823 2.0 440 2.0066 0.3453 0.1575 0.2965 0.2984 0.6632 0.6547 0.6587 0.2949 80.0
1.4089 3.0 660 2.0717 0.0768 0.0337 0.0637 0.0639 0.1559 0.1535 0.1547 0.0667 80.0
1.0687 4.0 880 2.1627 0.0125 0.0048 0.0104 0.0114 0.0322 0.0317 0.0319 0.0118 80.0
0.7445 5.0 1100 2.2927 0.0402 0.0177 0.0332 0.0332 0.0815 0.0809 0.0812 0.0374 80.0
0.7619 6.0 1320 2.4184 0.0185 0.0088 0.0152 0.016 0.0404 0.04 0.0402 0.0163 80.0

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1